
COMPONENT TREES FOR IMAGE FILTERING AND SEGMENTATION

Ronald Jones

CSIRO, Mathematical and Information Sciences,
Locked Bag 17, Nth Ryde N.S.W. 2113, AUSTRALIA,

Email: ronald.jones@cmis.csiro.au

ABSTRACT

In this paper we present algorithms for non-flat con-

nected component filters using the notion of a com-
ponent tree. The advantage of using non-flat filters
as compared to flat filters is that they can access and
utilise linking between components at sequential gray-

levels in the image. We have found that this informa-
tion can be used to develop powerful new connected
filters with practical applications [l]. One of the key
benefits of the approach is that the image features to

be filtered undergo the maximum amount of filtering
that is possible while leaving the rest of the image un-
touched. As a consequence, a segmentation of the fea-
tures can then be obtained simply by locating those
pixels within the image that have been changed by the
filter.

1. INTRODUCTION

In binary morphology, a component filter preserves only
those connected components in the image that satisfy
a given criterion [2]; the remaining components are
removed. The criterion is based on one or more of
the component’s attributes, for example the area or
perimeter of the component. Any binary filter can be
used to construct a corresponding gray-level filter by
using the notion of threshold decomposition. A com-
ponent in a gray-level image is defined as a connected
set of pixels in a threshold set of the image. The dis-

advantage with flat filters is that they cannot access
and utilise the link between components at sequential
gray-levels in the image, as by construction they are
applied to each threshold set separately. In this paper

we generalise work presented in [3] by introducing a
new gray-level component filter that is not-necessarily
flat, using the ,notion of a component tree [l].

2. THE COMPONENT TREE

The component tree is a representation of a gray-level
image that contains information about each image com-

ponent and the links that exist between components at
sequential gray-levels in the image. We define a compo-

nent tree as a set of nodes connected by a set of edges.
Each node in the tree represents a particular compo-
nent in the gray-level image. The node is an abstract

representation of the component that may be anything
from a list of all the pixels in the component to a single

attribute value such as component area. An example of
a component tree is illustrated in Fig. lb, correspond-
ing to the small gray-level image shown in Fig. la. For
every component in that image, there is a correspond-
ing node in the tree, represented by the circles in the
figure. The root of the tree is shown at the bottom of
the figure and the leaves of the tree are indicated by the
circles in bold at the top of the figure. A branch is de-
fined as the shortest sequence of linked nodes from any
given leaf down to the root of the tree. There are three
branches in the tree, corresponding to the three leaves.

The lines drawn between the nodes are the edges and
show the links between components in the image. As
an example of the attribute values that can be stored

in the nodes, component area is shown in italics to the
right of each node.

(4 (b)

Figure 1: The component tree. (a) Perspective view of
an example image. (b) Corresponding component tree.

3. FILTERING AND SEGMENTING AN
IMAGE WITH A COMPONENT TREE

The next step is to introduce mechanisms to filter the
image using the component tree. Filtering the tree is a
decision process which classifies nodes into those that

are to be removed and those that are to be preserved.
The component tree contains both attribute and link-
ing information and so there are many different possi-

ble tree filters that can be constructed. Of particular
interest to us is one which which is based on the con-
cept of an attribute signature. An attribute signature
is simply the sequence of node attributes in a branch
of the component tree. Necessarily then, there is an

attribute signature for every leaf in the t,ree. Tree fil-
tering using attribute signatures is a decision-making
process which classifies leaves into those that are active
and those that a.re not, based on the leaf’s attribute sig-
nature. The entire branch must be classified as active
when the leaf is active. One of the key benefits of the

approach is that the image features to be filtered un-
dergo the maximum amount of filtering that is possible
without changing the rest of the image at all. This is
accomplished by finding leaves that ,lie outside the re-
gion to be filtered and classifying each corresponding
branch as active. In so doing, we ensure that these re-
gions cannot be affected at all by the filtering process.

On the other hand, those leaves that inside the region
to be filtered remain classified as not active. This en-
sures that these regions are filtered as much as possible.

The concept is demonstrated on the image shown
in Fig. 2a, where the filtering problem is to remove as

much of the background as possible while preserving
the face. One method is to combine an area signature
with an eccentricity signature, as the face is elliptical
in shape. The attribute signature for a t.ypical regional
maximum within the the face is shown in Fig. 3a. The
attribute used is area; the values in the signature fall
mofiotonically from the area of the image down to the

value of 1, which is the area of the regional maximum
used. Shown in Fig. 3b is the attribute signature for the
same regional maximum, this time using component ec-
centricity as an attribute. By inspection of the two sig-
natures, a suitable criterion can be devised; the result
from the filter is shown in Fig. 2b. Notice that the face
has been preserved completely, while the background
has been removed as much as possible without affect-

ing the components that are connected to the face. As
mentioned above, this is a key feature of image filtering
using attribute signatures.

The component tree is used for image segmentation
as well as image filtering. The approach is to consider

a segmented image to be simply a binary image which

(4 (b)

Figure 2: Filtering an image using attribute signatures.

Areax

500

400

300

200

100

Face merges with background

.O SO 100 150 200 250

Eccentricity

1.0

0.8

0.6

0.4

Gray-level

(4

0 SO 100 150 200 250

Gray-level

(b)

Figure 3: Attribute signatures for the image of the
Mona Lisa.

marks only those pixels in the input image that have
been changed by the gray-level component filter. This
approach lends itself well to filtering based on attribute
signatures, where objects to be filtered undergo the
maximum possible amount of filtering while the rest

of the image is unchanged. In this case, the segmented
image marks only those pixels within the objects that
have been filtered. An example of a segmentation is

shown in Fig. 4. This time the face has been filtered,
rather than the background as shown in Fig. 2b. The
resultin; segmentation of the face marks those pixels

that have been changed by the filter.

I I

Figure 4: Segmenting an image using attribute signa-

tures.

4. EFFICIENT IMPLEMENTATION
ALGORITHMS

In this section we present pseudo-code for efficient algo-
rithms to implement image filtering and segmentation

using component trees. The process of filtering and
segmenting an image using a component tree can be
been divided into the three stages: (1) Constructing
the tree from the image; (2) Filtering the tree (specif-
ically, using an attribute signature); (3) Mapping the
filtered tree to an output image. These three steps are
illustrated in Fig. 5. Modularising the process in such a
way allows a flexible and efficient tree-based image pro-
cessing package to be developed. Each node in the tree
corresponds to a component in the gray-level image;
filtering the tree involves deciding which components
are to be removed from the image during filtering. The

mechanism used is the binary flag active in the informa-
tion structure associated with each tree node. If this
flag is set to the value 1, then the component corre-
sponding to that node is to be preserved. If it is set to
0, then the component is to be removed. This concept
is illustrated in Fig. 5, where the nodes that have been

set to active during stage (2) are indicated by the filled-
in circles. The image resulting from stage (3) contains

only those components that have corresponding active
nodes in the filtered tree.

In Fig. 6 is shown the tree data structures that will
be used. Shown in Fig. 6a is the root data structure,
containing a pointer root to the root node in the tree,
the number nlenves of leaves in the tree and a structure
leaves containing pointers to all the nodes in the tree

that are leaves (this facilitates convenient traversal of
the tree from a leaf to the root). Shown in Fig. 6b is the
node data structure, containing a pointer info to the in-
formation associated with the node, a pointer parent to
the parent node of the node, the number nchildren of

0

Figure 5: The three stages of filtering and segmenting
an image using a component tree.

children of the node and a structure children containing

pointers to all the children. The parent pointer allows
traversal of the tree from a leaf to the root, while the
children pointers allow traversal from the root to the
leaves. In Fig. 6c is shown the information data struc-
ture info, containing: (i) The gray-level of the node,

graylevel; (ii) The location of the node, where only one
location within the component need be recorded (the
rest of the component can be obtained by scanning for
pixels connected to this point with a value greater than
or equal to graylevel); (iii) The attribute assigned to the
node; and (iv) -4 flag active to be set during the tree

filtering stage.

(a) (b) Cc)

Figure 6: Data structures used for the tree. (a) The
root data structure. (b) The node data structure. (c)
The info data structure.

4.1. Constructing the Component Tree

The following algorithm can be used to construct a
component tree from a gray-level image. It is based

on the algorithm for attribute openings and thinnings
presented in [3], which in turn was a generalisation

of algorithm presented by Vincent [2] for area open-
ings. The algorithm requires the following input vari-

ables: f, a copy of the input image with the border
pixels set to zero (to stop the algorithm running off
the side of the image). size, the number of pixels in
f; min, the minimum gray-level in f; RegA, an array
containing the locations and gray-levels of all the re-
gional maxima in the image; numreg, the number of
regional maxima in the image. The algorithm outputs
the variable tree with a structure as discussed above.
In addition, the algorithm also utilises the following
auxiliary functions: push(Q, pixel), places pixel on
the priority queue Q; pop(Q,pizel), fetches the pixel
in the Q with highest gray-level. It returns 0 if the

queue is empty and 1 if it finds a pixel; update(pizeZ),
updates attribute information about the current com-
ponent being scanned by including pixel in the cur-
rent component; clear(), clears any information col-
lected by update; Nbr(oldloc), returns the neighbour-
hood locations around the given location oldloc; cre-
atenode(level, location), allocates memory for a new
node and assigns it the given gray-level, image loca-
tion and the current attribute information collected
by update; attach-node(newnode, node)! makes node
a child of newnode; and attach-at-level(leaf, node,
level), attaches node to the branch containing leaf at
the gray-level level.

construct-tree(f,size,min,RegA,numreg)

1. tree.root c create-leaf (min, &e/2)
2. tree.nleaves t numreg; regindex t 0
3. for all pixel E RegA
4. clear0
5. regindex t regindex + 1; level t pixel.level;

location C pixe1.x
6. newl[pixel.x] t regindex; node t NULL;

flag t 0
7. push(Q, pi4
8. while (pop(Q,pixel) # 0)

9. if (pixel.level < level)

10. newnode t create-node(leve1, location)
11. if (node = NULL)
12. tree.leaves[regindex - l] t newnode

13. else

14. attach-node(newnode, node)
15. node t newnode; level t pixel.level

16. if (Zevel = f2lpixeZ.x])

17. attach-at_level(tree.leaves[oldl[pixel.x]
-11, node, level)

18. while (pop(Q,pixel) # 0)
19.
20. fkg t 1; break
21. oldloc t pixe1.x; oldl[oldloc] c regindex;

f2[oZdZoc] t level
22. update(pixel)
23. for all pixel.x E Nbr(oZdloc)
24. if ((f jpixeZ.x] # min) and (newZ[luixeZ.x]

< regindex))
25. pixel .level i- f [In’xel .x]; new1 [pixel .x]

t regindex
26. push(Q, pixel)
27. if (flag = 0)
28. newnode t create-node(leve1, location)
29. if (node = NULL)
30. tree.leaves[regindex - l] t newnode
31. else

32. attach-node(newnode, node)
33. node t newnode

34. attach-node(tree.root, node)
35.return tree

4.2. Filtering the Component Tree

Each node in the tree corresponds to a component in
the gray-level image; filtering the tree involves deciding
which components are to be removed from the image
during filtering. The mechanism used is the binary flag

active in the information structure associated with each
tree node. If this flag is set to the value 1, then the com-
ponent corresponding to that node is to be preserved.

If it is set to 0, then the component is to be removed;
it is assumed that this flag initially has the value 0.
The tree can then be passed onto the image filtering
and segmentation stage presented in Section 4.3. In
this section we present pseudo code for a filter based
on attribute signatures.

The following algorithm signature-filter can be used
in conjunction with a user-defined function test-signa-
ture to filter a tree using attribute signatures. The
function test-signature must be designed for the par-
ticular image filtering problem at hand. It should re-
turn 0 if the signature belongs to a regional maximum

within the feature to be filtered or segmented, other-
wise it should return a non-zero value. The algorithm

requires a single input variable tree.

signatureIlter(tree)

1. it0
2. while (i #tree.nleaves)

3. if (test-signatzLre(tree.leaves[i]) # 0)
4. set-actiwes(tree.Zeaves[i])
5. iti+l

The simple recursive function set-actives defined be-

low. By setting the flags of the entire branch to the
value 1, we ensure that this regional maximum will not
be altered by the subsequent image filtering and seg-
mentation phase. The input variable to set-actiwes is
node, which is a leaf in the tree (cf. line 4 of the above
algorithm).

setactives(node)

1. if (node.info.adive = 0)
2. node.info.active t 1

3. if (node.parent # NULL)
4. setactives(node.parent)

The execution time for the algorithm signature-filter
using an input tree with 10 thousand leaves is approx-
imately 1.5 seconds on a Spare 10.

4.3. Algorithm for Filtering and Segmenting the
Image

Once the tree has been filtered, the following in-place
recursive algorithm can be used to filter and segment
the corresponding image. The input variables are: f,
the memory allocated for the gray-level filtered image,
initialised to be a copy of the input image with the

border pixels set to zero; s, the memory allocated for
the binary segmented image, initialised to the value
zero; and node, initialised to be the root of the filtered

tree.

filterimage(f,s,node)

1. $4-0
2. while (i #node.nchildren)
3. if (node.chiZdren[i].info.active = 1)
4. filterimage(f, s, node.chiZdren[i])
5. else
6. f Zatten(f, s, node.children[i].inf o.locaticm,

node.inf o.graylevel)
7. iti+l

The subroutine flatten, defined below, utilises the
following variables and auxiliary functions: f and s,
images as defined above; x, y and z, locations within
the image; level: gray-level threshold - all pixels in
the region connected to x with value greater than level

are flattened; Q, a simple queue containing the loca-
tions of pixels in the image; push, a function taking
two arguments, the first being the queue Q and the

second the location x to be to be stored in the queue.
The function places the location x as the first item in
the queue; pop, a function which takes the same two

arguments as push. It fetches the last item found in
the queue Q, returning 1 if it finds an item and 0 if the
queue is empty; and Nbr, the neighbourhood function,
as defined in Section 4.1.
flatten(f,s,x,level)

1. if (f(x) > level)
2. pzLsh(Q, x)
3. f(x) t level; s(x) t 1
4. while (&p(Q, y)’ # b j
5. for aZ1 z E Nbr(y)
6. if (f (2) > level)
7. IYush(Q, ~1
8. f (2) t level; s(z) t 1

For a 1000 x 1000 image with just over 10 thousand
regional maxima, the tree requires 3 mega-bytes of disk

space. The total implementation time for the three

stages for processing an image using a component tree
is of the order of 50 seconds on a Spare 10 (Model 51,

5OMHz).

5. CONCLUSION

This paper has introduced a general non-flat gray-level
connected filter and proposed efficient algorithms for
its implementation. One of the key benefits of the ap-
proach is that the image features to be filtered undergo
the maximum amount of filtering that is possible while
leaving the rest of the image untouched.

PI

PI

PI

6. REFERENCES

R. Jones. Connecting filtering and segmentation us-
ing component trees. Submitted to Computer Vi-
sion and Image Understanding, May 1997.

L. Vincent. Grayscale area openings and closings,
their efficient implementation and applications. In
J. Serra and P. Salembier, editors, Mathematical
Morphology and its applications to signal process-
ing, pages 22-27. UPC Publications, May 1993.

E. J. Breen and R. Jones. Attribute openings,
thinnings and granulometries. Computer Vision
and Image Understanding, 64(3):377-389, Novem-
ber 1996.

