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Abstract 
The computational cost of morphological operations can 
be reduced by proper decomposition of structuring 
elements into smaller elements. In this paper, optimal 
decomposition of a set of commonly-used structuring 
elements is derived for two hardware architectures - 2-D 
mesh array processors and 3 x 3 pipeline machines, based 
on the decomposition algorithms reported in [l] and [2]. 
The resulting set of optimal decomposition provides a 
useful reference guide to the design and optimal 
implementation of morphological image filters. 

1. Introduction 
Morphological operations such as dilations and 

erosions must be implemented efficiently on existing 
image processing systems for practical applications. 
These systems, however, are designed primarily for small 
local operations[3], or support only local operations of 
fixed size due to hardware constraints[4]. These inherent 
system limitations require that large morphological 
operation be converted into a sequence of small 
operations, where the size of operation corresponds to the 
size of structuring element. A single dilation(erosion) by 
large structuring element can be represented equivalently 
by a sequence of dilations(erosions) by smaller structuring 
elements, provided that the original structuring element is 
decomposed into a set of smaller structuring elements. 
Hence, efficient implementation of morphological 
operations can be realized by the decomposition of 
structuring elements. 

In general, the decomposition of a structuring 
element is not unique, which naturally leads to an optimal 
decomposition that minimizes the computational cost of 
the resulting recursive operations. In addition, the 
optimization criteria depend on the architecture of the 
system, hence different optimal decomposition is required 
for different system architecture. 

There exist a few algorithms for the decomposition 
of structuring elements[5-lo]. Recently, optimality issue 
of structuring element decomposition has been 
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investigated by the authors[ 1, 21. The following 
theoretical issues have been addressed: Optimization 
criteria for the particular architecture in terms of 
computational cost; convexity of the structuring element 
shape which imposes conditions on the decomposition; 
and decomposability of a given structuring element which 
is indicative of the existence of a solution. Algorithms for 
the optimal decomposition and tests for the various 
necessary decomposition conditions have also been 
proposed in these studies. 

In this paper, the procedures for optimal 
decomposition are briefly reviewed for 2-D parallel array 
processors[3] and 3 x 3 pipeline machines[4]. Then, a set 
of standard, commonly-used structuring elements such as 
squares, rectangles, triangles, lines, hexagons, octagons, 
rhombuses and circles is decomposed using the given 
decomposition algorithms, and the resulting sets of 
optimal decomposition are presented. These 
decomposition sets provide readers with a quick reference 
guide for the optimal implementation of morphological 
filters when arbitrary large structuring elements are 
required for the applications on hand. 

2. Optimal Decomposition of Structuring Elements 
2.1. Definitions 

Definition 1 : A binary image is simply-connected 
if and only if it is 8-connected and contains no holes. All 
images in this paper are assumed to be simply-connected 
binary images. 

Definition 2 : An image A is said to be equivalent 
to an image B, denoted by A - B, if and only if A is 
identical to B except for a position offset, that is, A is a 
shifted version of B. 

Definition 3 : An image A is a factor of an image S 
if and only if S = A Q B for some image B, where 8 is a 
dilation operator. A factor A of S is a trivial factor if and 
only if A is a one-pixel image or A - S. A factor A of S is 
a prime factor if and only if every factor of A is a trivial 
factor. 



Definition 4 : An image S is decomposable if and 
only if S can be represented by S = Al G3 A2 @ . . . G3 An 
where each Ai is 3 x 3 or less and simply-connected. 

2.2. For 2-D Mesh Array Processors 
A procedure to determine optimal decomposition of 

structuring elements for 2-D mesh array processors is 
described, where the structuring elements are assumed to 
be convex. On a 2-D mesh array processor, the cost of 
morphological operation by a one-pixel structuring 
element is the number of 4-connected shifts required by 
the pixel in the structuring element, which is equal to the 
distance of pixel in city-block metric[l2]. Hence, the 
worst-case cost of operation is the sum of distance of all 
the pixels in the structuring elements in city-block metric. 

A dilation between two convex images can be 
represented by the chain code arithmetic[l 11. 
Subsequently, it has been shown that every convex image 
can be decomposed into a sequence of dilations by a set of 
13 prime convex factors Qi given in Figure 1. It has also 
been shown that in order for a given decomposition of S 
into Qi to be optimal, the origin of Qi must be located at a 
specific location as defined in Figure 1; the center of 3 x 3 
grid indicates the origin. Note that Ql, Q2, Q3, and Q4 
have more than one choice of origin. Any non-prime 
convex image can be further decomposed into all prime 
factors without increasing the cost, which implies that 
non-prime factors need not be considered in the 
determination of optimal decomposition. 

The decomposition of S into prime factors can be 
determined recursively, that is, (i) determine a prime 
factor Al of S, resulting in S - Al Q Bl; (ii) determine a 
prime factor A2 of Bl, resulting in S - Al $ A2 Cl3 B2; 
(iii) repeat (ii) until Bi is prime and denote An - Bi, 
resulting in S - Al @ A2 $ . . . $ An; (iv) determine the 
origin of each Ai such that S = Al @ A2 @ . . . @ An Cl3 T, 
where T is a one-pixel image containing a position offset. 
In this way, any possible decomposition into prime factors 
can be obtained, hence the problem of optimal 
decomposition is narrowed down to two sub-problems: (i) 
the order of prime factor selection and (ii) origin of each 
factor. 

If the origin of Qi is assigned as in Figure 1, the 
cost is dependent only on T. In other words, for the 
decomposition of S = Al (33 A2 $ . . . C3 An CI3 T, where Ai 
is one of Qi’s in Figure 1, the contribution of Al @ A2 
03 . . . Q An to the cost is always constant, and the 
contribution of T remains the only variable. Since T 
depends only on the origins of Ql, Q2, Q3, and Q4 under 
the constraints given in Figure 1, the origin of these four 
factors must be assigned such that the cost of T is 
minimized. A procedure to assign the origins to Ql, Q2, 
Q3, and Q4 is given in [I]. 

Finally, it has been shown in [1] that Ql, Q2, Q3, 
and Q4 must be selected prior to other factors in order to 
minimize the cost of T. In conclusion, the optimal 
decomposition results when the prime factors are selected 
recursively in the order of Ql, Q2, Q3, Q4 and the rest of 
factors, and the origin of each factor is assigned as in 
Figure 1. Such a procedure for optimal decomposition is 
implemented and applied to some commonly-used 
structuring elements, and the results are presented in 
Section 3. 

2.3. For 3 x 3 Pipeline Machines 
A procedure to determine optimal decomposition 

for 3 x 3 pipeline machines is described, where no 
restriction is placed on the shape of structuring elements. 
On a 3 x 3 pipeline machine, the cost of morphological 
operation is the number of 3 x 3 structuring elements 
required for the whole operation. It has been shown in [2] 
that not all structuring elements can be decomposed into 3 
x 3 factors, hence the first step towards optimal 
decomposition is to check if a given S is decomposable. 

The decomposability check consists of 3 tests, and 
is necessary only for concave images because convex 
images are decomposable into 3 x 3 factors in Figure 1. 
The first test checks the boundary of S. If S contains a 
concave boundary that can not be fitted in a 3 x 3 region, 
then S is not decomposable. The second test is to search 
for the existence of necessary factors of S. For each 
concave boundary of S, there must exist a 3 x 3 factor that 
contains the same concave boundary. The theory behind 
these two tests is that a new concave boundary cannot be 
created by dilation of 3 x 3 simply-connected structuring 
elements; the concave boundary must be copied from the 
structuring elements. 

Finally in the third test, linear equations are solved 
for integer solutions, where the equations are constructed 
based on S and its all 3 x 3 prime concave factors 
determined above. If a solution does not exist, S is not 
decomposable. Otherwise, the solution defines a sequence 
of dilations Al @ A2 CI3 . . . 8 An 8B, where Ai is one of 
the 3 x 3 prime concave factors and B is a convex factor 
of arbitrary size. If this sequence of dilations produces a 
simply-connected image, then S is decomposable. 

For a given decomposable S, its optimal 
decomposition is sought for by further decomposing B 
into prime convex factors and combining all resulting 
small structuring elements into 3 x 3 images so that the 
total number of 3 x 3 images is minimized. Each solution 
defines one decomposition which has its own optimized 
version. To find the global optimal decomposition among 
all possible solutions, it is necessary to find all solutions 
of the linear equation and to optimize each. This 



procedure is implemented and applied to a set of 
commonly-used structuring elements. The results are 
shown in Section 3. 

3. Optimal Decomposition of Commonly-Used 
Structuring Elements 

Figures 2 - 5 show the results of optimal 
decomposition for symmetric polygons, rotated rectangles, 
triangles, and circles, respectively. The optimality of each 
decomposition is guaranteed from the proofs in [I] and 
[2]. In these Figures, an integer n in front of the factor 
denotes n-fold recursive dilations; when n = 0, the n-fold 
dilation becomes an empty set. The center of 3 x 3 grid 
denotes the origin. 

In Figures 2 - 4, (a) shows the given structuring 
element, where 0 indicates the origin, (b) shows the 
optimal decomposition for 2-D mesh processors, and (c) 
shows the optimal decomposition for 3 x 3 pipeline 
machines. Note that in Figure 2, it is assumed that not 
both a and b are zero; the case of a = b = 0 is considered 
in Figure 3. 

Many distinctive shapes are obtained based on the 
values of a, b, and c in Figure 2; a horizontal or vertical 
line when c = 0 and a or b is zero; a rectangle when c = 0 
and none of a and b is zero; a hexagon when c + 0 and a 
or b is zero; and an octagon when none of a, b, c is zero. 
In Figure 3, when a or b is zero, it is a diagonal line; and 
when a = b, it is a rhombus. 

In this paper, the digital circle of radius i, Ci, is 
constructed by the algorithm in [13]. For example, C4 is 
shown in Figure 5(a). Some of these digital circles 
contain concave boundaries. Since the algorithm for 
optimal decomposition of concave structuring elements 
for 2-D mesh processors is not yet known(optima1 
decomposition in [l] is for convex structuring elements 
only), optimal decomposition of these concave circles 
cannot be determined for 2-D mesh processors. However, 
digital circles can be approximated by octagons and in 
such cases, optimal decomposition is available and given 
in Figure 2(b). 

The procedure for optimal decomposition of 
concave circles for 3 x 3 pipeline machines is known[2]. 
All concave circles up to radius 10 pass the decomposition 
tests, and the optimal decomposition for 3 x 3 pipeline 
machines is shown in Figure 5(b). 

4. Conclusions 
In this paper, two procedures for optimal 

decomposition of structuring elements for 2-D mesh 
processors and 3 x 3 pipeline machines were implemented 
and applied to a set of commonly-used structuring 
elements. The algorithms are based on the theoretical 
studies in [I] and [2]. The decomposed results provide a 

quick reference guide for the design and optimal 
implementation of morphological image filters. 
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Figure 1. Thirteen prime convex factors with an origin 
indicated by the center of the 3 x 3 grid. 
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Figure 2. Decomposition of symmetric polygons, S,. (a) 
Polygon with a = 2, b = 3 and c = 2. It is assumed that 
not both a and b are zero. (b) Optimal decomposition for 

2-D mesh array processors. (c) Optimal decomposition for 
3 x 3 pipeline machines. 

J 
. . . 

b . . . . . 
. . . . . . . 

..ooooooo 
..oo~oooo 

.**~~~~ee 
. . . . . . . 

. . . . . 

Figure 3(a) 

Sr=b/2 m $ bi2m Sr=a/Zm @a/Zm 

ifa=O, b+O ifa#O, b=O 

Sr= (b-l)@ @ (a-b)/2m 

$ (a+b-2)/2 q CD H 

ifa>b>O 

Sr = (b-a)/2 Q (a+b-2)/2 

Q (a-I)m $ m 

ifb>a>O 
Figure 3(b) 

Sr= b q CT3 (a-b)/2m 

ifarb 

Sr= a mCl3 (b-a)/2B 

ifb>a 

Figure 3(c) 

Figure 3. Decomposition of rotated rectangles, Sr. (a) 
Rotated rectangle with a = 4 and b = 6. (b) Optimal 
decomposition for 2-D mesh array processors. (c) Optimal 
decomposition for 3 x 3 pipeline machines 



. . . 
a . . . I, , . . . . 

El . . . . . 

. 
. . . 

. . . . . 
. ..~.oo 
4 b 

a 2a 
Figure 4(a. 1) Figure 4(a.2) 

Figure 4(b) 

ST, =(a-1)/2 m $ m@ (a-1)/2 q 
if a is odd 

ST, = al2 

if a is even 

Figure 4(c) 

Figure 4. Decomposition of triangles, ST1 and Sn. (a.1) 
Triangle Sr, with a = 4. (a.2) Triangle Sr, with a = 3. (b) 
Optimal decomposition for 2-D mesh array processors. (c) 
Optimal decomposition for 3 x 3 pipeline machines. 
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Figure 5. Decomposition of digital circles, Ci. (a) Digital 
circle of radius 4, C4. (b) Optimal decomposition for 3 x 

3 pipeline machines. 


