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ABSTRACT 

In this paper, the Fuzzy Vector Median is proposed, defined 
as an extension of Vector Median. It is based on a novel dis- 
tance definition of multidimensional fuzzy numbers (fuzzy 
vectors), which satisfy the property of angle decomposition. 
The proposed distance of two fuzzy vectors depends on the 
classical distance of the fuzzy set centers and on the fuzzi- 
ness that every fuzzy set holds. As a result the Fuzzy Vector 
Median of a set of fuzzy vectors is affected by the presence 

of fuzziness. 

1. INTRODUCTION 

Multichannel signals appear in many important signal pro- 
cessing applications. Typical examples are the multispectral 
satellite images, color images and signals that represent ve- 
locity. Multichannel techniques, that have been proposed 
rather recently, and consider the correlation of the channels, 
seem to be the most appropriate way to process multichan- 
nel signals. One of the most popular technique is the vec- 
tor median filter, that inherently utilizes the correlation of 

the channels and gives some desirable properties such as, 
the’zero impulse response and the preservation of the signal 

edges [6]. 

However, any crisp value conceals a degree of uncer- 

tainty that can bc described by using fuzzy numbers [2]- 
[5]. In this paper, the uncertainty of the vector value will be 

taken into account by using fuzzy instead of crisp vectors. 
The term fuzzy vector will be used in the following, to de- 
scribe the extension of an n-dimensional crisp set C to an n- 

dimensional fuzzy set X defined in an (n + 1)-dimensional 
hyperspace, by using a membership function p : C + [0, l] 

[ 11. The term fuzzy vector is usually found in the literature, 
describing the notion of a vector of n l-dimensional fuzzy 
numbers. This notion could be appropriate to describe the 
uncertainty in non-correlated data or when different degrees 
of uncertainty is possible to be given to each signal channel. 

2. ANGLE DECOMPOSED FUZZY VECTORS 
(ADFV) 

2.1. Definition of ADFVs 

The fuzzy sets arc usually dcscribcd by the union of their 
o-cuts instead of the membership function. The o-cuts of 
an l-dimensional fuzzy set are the classical sets Xa, where 

z E Xa e P(Z) 2 (Y. They can easily extended to de- 
scribe multidimensional fuzzy sets. Thus, the o-cuts of an 
n-dimensional fuzzy set will be the classical sets X0, where 
x E Xa w p(x) 2 (Y, and p is a function of n variables. A 
fuzzy set is called normal if 3x : p(x) = 1 or X1 # 8. It is 

called convex if V(Y~, crz E [0, 11, o1 > (~2 @ X”’ G XaZ. 
A normal and convex fuzzy set is calledfuzzy number [7]- 
[9]. A l-dimensional fuzzy number will be called convex 

fiuy number when the corresponding a-cuts are convex 
sets. In the following the Angle Decomposed Fuzzy Vectors 
(ADFVs) will be defined as a subset of multidimensional 
fuzzy numbers and will provide us the ability to define a 
distance between them. 

Let X be an n-dimensional fuzzy set, px(x) its mem- 

bership function and Xa the corresponding o-cuts. Con- 
sider also that there is only one vector x, where px(xc) = 
1. The vector x, will be called the center of the fuzzy set. 

Consideralson-langlesf?=(Bi,i=1,2,...,(n-l)), 
8i E [O,rr). The centre of the fuzzy set x, and each an- 

gle Bi determine a hyperplane. The union of n - 1 hyper- 
planes is a straight line (direction) in the n-dimensional hy- 
perspace, where a function ~1 can be defined as ~I(z, 0) = 

~X(21(5,e),22(2,e),..., 2,-1(2,e), z). This function 
can be considered as a membership function of an l-dimen- 
sional fuzzy set Xe. Then, the ADFVs are defined as fol- 

lows: 

Definition 1: An n-dimensional fuzzy set X is an An- 
gle Decomposed Fuzzy Vector (ADFV), if, for each vector 

of angles 8 = (e, , e2, . . . r&-l), the l-d fuzzy set Xe = 
{z, pl (x,0)} is a convex fuzzy number. 

An example of a 3-dimensional ADFV and the angle de- 

composed 1 -d convex fuzzy numbers is shown in Figure 1. 
It is easy to prove that any ADFV is a fuzzy vector. We 



Figure 1: Two l-d convex fuzzy numbers Xe,Ye, com- 
ing from two 3-d ADFVs X,Y when the angle vector 0 = 
(64, e2) is determined. 

can also prove that if 0 is a n - 1 - k vector the function 

/&(Q,~2,. . . , Xk, 8) can be considered as a membership 
function of a k-dimensional ADFV. The use of ADFVs give 
us the ability to establish a one to one correspondence be- 
tween the points of two ADFVs that limit their o-cuts on a 
certain direction. By using this correspondence, a distance 
measure between multidimensional ADFVs will be defined. 

2.2. ADFVs distance definition and properties 

Let us assume that X, Y are 1 -d fuzzy numbers, symbolized 
as X = U, .[xCp, x:], Y = U, .[yp, $1, where xr, yr and 
x:, y,“, are the lower and upper limits of the corresponding 
a-cuts. Then a distance can be defined as: 

D[X,Y] = 
I 

a~o~llx~>YPll + IIX,“,Y,“lll~~ (1) 

where ] I., . ] ( is a distance norm of classical numbers. This 
distance definition can be extended to n-dimensional AD- 
FVs as: 

+IIx~,Y~aII)dcudBn-l.. .dBI (2) 

where xfa, yf” and xfO, yfQ are the lower and upper 
points that limit the a-cuts of the corresponding l-d Xe 
fuzzy numbers, and ] I., . ] ( denotes a distance norm between 
classical vectors. In the following the o-cuts of the Xe 

fuzzy vectors will be called @a-cuts and will be symbol- 
ized as Xea. The use of ADFVs guarantees that every point 
that belongs to the line segment from xf” to xf” belongs 
also to the &-cut. 

Figure 2: The upper xfQ, yf* and lower xfQ, yf* limits of 
two &-cuts Xecr, Ye”, the centers of the ADFVs xc, yC and 
the distances between them. 

Let X, Y, Z be ADFVs. We can prove that the follow- 
ing distance properties are valid: 

0 D,[X,Y] =OHX=Y 

l at ☯X7 Y] = aa☯Y, Xl 

l a$& Z] I G☺X,Yl + k☯Y, Zl 

2.3. Euclidean fuzzy distance 

Let us choose the Euclidean norm to define a distance be- 
tween two classical n-dimensional vectors x = (xi, x2? 

“.7 xc,) and Y = (~1, ~2, . . . , yn) as: 

&GY) = (~l-Yl)2+(~2-Y2)2+.~.+(GrYY,)2 (3) 

Then the Euclidean fuzzy distance can be defined by us- 
ing (2) and (3). When the fuzzy vectors are described by 
using a-cuts, for a given cy and a vector of angles 8 = 

(e1,e2,..., t&-i), two points xfQ and xf* are defined, whi- 
ch are the lower and the upper limits of the correspond- 
ing &-cut. The proposed Euclidean fuzzy distance is the 

normalized integral of all the distances d%(xf’O, yf)O) be- 
tween the lower limits, and the distances d%(xfa, yf?) be- 
tween the upper limits, for every a E [0, l] and & E [0, rr), 
i = 1,2 ,..., n- 1. 

Let us symbolize as d,, ea the Euclidean distance between 
the lower limit xf” of the ecu-cut and the center x, of an 
ADFV X, as d$ the Euclidean distance between the upper 
limit, xfa of the &r-cut and the center x, of an ADFV X, 
and as d,, the distance between the centers of two ADFVs 
X, Y. These distances, which can be calculated by using 
(3), are shown in Figure 2. 

It is easy to prove that the distance between two lower 
limits of two ADFVs a-cuts is equal to: 

d%(x$Y yfa) = (d;: - 4;)” + 
n-l 

+2(&f - d;;)d,, n cos(8i) + d;, 
i=l 

(4) 



where Bi, i = 1,2,. . . , n - 1 are known angles & E [0, r). 
The distance between two upper limits of two ADFVs (Y- 
cuts is equal to: 

d:(xf*, yf?) = (df,* - 4,“)” - 

n-1 

+2@% - df;)d,, n cos(&) + d&, (3 
i=l 

By using (2),(4) and (5) the Euclidean fuzzy distance be- 
tween two ADFVs X, Y is given by: 

De,, [X Yl = d& + d;=, (6) 

where: 

+(& - df;)2+ 

n-1 

+2d,, n cos(f%)(&’ - d;; - df: + de,;)]dad&-1 . . . d6’1 

i=l 

(7) 

The above equation shows that the proposed Euclidean 
fuzzy distance is the classical Euclidean distance between 
the centers of two ADFVs X, Y, modified by a factor that 
depends on the fuzziness that every ADFV holds. The Eu- 
clidean fuzzy distance can be considered as a generalized 
Euclidean distance since equation (7) yields to 0 when the 
ADFVs are crisp vectors (dfz = df; = df: = df,Q = 0, 
V&, a). The Euclidean fuzzy distance is also equal to the 
classical Euclidean distance of the ADFVs centers when the 

fuzziness of ADFV X is equal to the fuzziness of ADFV Y 
for every angle and a-cut (df: = df;, dfg = dft, V&, a). 

Generally, the Euclidean fuzzy distance can be equal to, 
greater or less than the classical distance of the ADFVs 
centers, depending on the ADFVs membership functions. 
Figure 3 shows the distance between two 2-d ADFVs de- 
pending on their fuzziness. The ADFVs X, Y are assumed 
to have elliptical o-cuts with axes f,S , f,“z and frl, fr2 re- 
spectively, which are reduced linearly from their maximum 

valuesf,l,f,2,fyl,fy2for(Y =O,tozeroforcw = 1. In 
Figure 3a the distance of the centers is 100, f,S and .fF2 vary 

from 0 to 50, and f,“z = &$, ftl = F. In Figure 3b the 
distance of the centers is again 100, f$ and ff2 vary from 

0 to 50, and fZi = 10, fZ2 = 30. These examples show that 
the more the fuzziness of the two ADFVs differs, the more 
their fuzzy Euclidean distance is greater. In special cases, 
when the fuzziness is not uniformly distributed around the 
center of a fuzzy set, but it is greater towards the center of 
the other fuzzy set, the fuzzy Euclidean distance can be less 
than the classical Euclidean distance. 

0 

(a) 

(b) 

Figure 3: (a) The distance of two ADFVs X, Y depending 

on their fuzziness fZi and fy2 when fF2 = 6$, f,S = 
G 2 . (b) The distance of two ADFVs X, Y depending on 

the fuzziness of Y, fpl and fy2 when fzl = 10, fz2 = 30. 

3. FUZZY VECTOR MEDIAN DEFINITION AND 
PROPERTIES 

Based on the previously defined distance of ADFVs, we ex- 
tend the classical definition of the vector median as follows: 
Definition 2: The Fuzzy Vector Median (FVM) of X1, X2, 

, , X, ADFVs is the ADFV XFVM such that XFVM E 
(X+-1,2,... ,n}andforallj=1,2 ,..., n 

xDnLXFVM, Xi] I CDn[Xj,Xi] (8) 
i=l i=l 

A straightforward algorithm to find the FVM of a set of 
fuzzy vectors is the following: 

l for each fuzzy vector Xi compute the sum of the dis- 
tances Si to all other vectors: 

Si = eDn[Xj,Xi] (9) 
j=l 

l Find k such that Sk is the minimum of Sit i = 1, 2, 

..., 72. 

l The Fuzzy Vector Median is &. 



When the Euclidean fuzzy distance is used the Euclidean 
FVM is defined. Similarly to the classical vector median, 
the Euclidean FVM XFVM does not minimize the uncon- 

ditional expression: 

(10) 
i=l 

but, by definition, it minimizes the same expression, when 

Y should be one of Xi. The proposed .distance of two fuzzy 
vectors depends on the distance of the crisp fuzzy set cen- 

ters, and on the fuzziness that every fuzzy vector holds. As 
a result the Fuzzy Vector Median of a set of fuzzy vectors is 
affected by the presence of fuzziness. The fuzzy vector, that 
its center is the classical vector median of the fuzzy vector 
centers, may be substituted by another fuzzy vector when its 
fuzziness is different from the fuzziness of its neighbouring 
vectors. 

In the following, the condition which should be valid to 

take place such a substitution will be found. Let us symbol- 
ize as dij the distance of the centers of two ADFVs Xi, Xj 

that can be calculated by (3), and dfi., the distance depend- 
ing on the fuzziness given by (7). The classical vector me- 
dian of the centers of the ADFVs can be found by calculat- 

ing the sums 

(11) 
j=l j-l 

Without loss of generality, we can assume that Se; < S,,,, , 
vi = 1,2,..., n - 1, which means that xci is the classi- 

cal vector median of the centers. Thus, by using (1 I) the 
following is also valid: 

S%+*j - S& = C(i+k)i > 0 k=l,...,n-i (12) 

The ADFV Xi+k will be the FVM if and only if Se(i+kj < 
Se+j = 1,2 ).‘.) n,j # i+k. Byusing(6)and(12)itcan 
be proven that the above condition is equivalent to: 

j=l j=l 

The above equation shows that, the vector that corresponds 
to the classical Vector Median is the most probable candi- 
date to be the Fuzzy Vector Median since Cii = 0. It is also 
more probable to bc substituted by its ordered neighbours, 
and the probability is reduced as the classical distance of the 

centers C increases. 

4. APPLICATIONS 

Vector median filters are usually used to remove impulses 
from noisy color images. In the following, we shall present 

experimental results when the FVM will be applied on the 
henna image (256 x 256 pixels), corrupted by impulsive 
noise and mixed impulsive and Gaussian noise. The FVM, 
that uses fuzzy Euclidean distance, was applied on a 3 x 3 
window. Fuzziness was inserted to the problem by using the 
information that the neighbouring pixels hold. The chro- 
matic RGB values of the nine pixels of each window was 
ordered and the average of the differences, between each 
pixel chromatic value and its two closest values, was used as 

a measure of the pixel fuzziness. It is obvious that the fuzzi- 
ness of a pixel changes as the window moves, and when the 

size of the window is modified. By using this kind of fuzzi- 
ness, the Fuzzy Vector Median filter removes the impulsive 
noise and preserves the edges with better performance in 
comparison with the Vector Median filter. Moreover, FVM 
reduces the local variances of the filtered image in homoge- 

neous regions. 
Let us symbolize as P, go, b” the chromatic RGB values 

of the original image, as rn, gn, bn the values of the noisy 
image and as rf , gf , bf the values of the filtered image. The 
Signal to Noise error Ratio (SNR) defined as: 

SNR = (To - t-f I2 + w - gf 1” + @” - bf 1” 
(9 - P)2 + (go - g”)2 + (b0 - b”)2 

(14) 

was used to demonstrate the better performance of FVM 
versus classical VM. The results of the EVM and VM filters 
applied on the image fenna, corrupted with different values 
of impulsive and Gaussian noise, are presented in Table 1. 

It shows that the FVM reduces the error ratio in all cases. 
The local variances are calculated for every pixel, by using 
a 3 x 3 window centered on it. Let T, ij, 6 be the average 
of the RGB values of the pixels that belong in the window. 
Then the local variance of a pixel is: 

n2(k, Z) = (rf - 5;)2 + (gf - Tj)2 + (bf - z)2 (13 

The average of the local variances ?? of all the pixels is pre- 

sented in Table 2. It shows that the FVM also reduces the 
local variances in most cases. 

Figure 4a shows the result of the FVM filter applied on 
a corrupted with mixed impulsive (p = 0.2) and Gaussian 
(s = 10) noise. The local variances of the VM and FVM 
filtered images are shown in Figures 4b and c respectively. 
Figure 4d shows the differences between the local variances 
of the FVM filtered images shown in Figure 4b and c. The 
variances are subtracted and the red channel corresponds to 
the positive differences, where the EVM local variances are 
greater. The green channel corresponds to the negative dif- 
ferences, where the VM local variances are greater. The 
blue channel corresponds to the local variances of the orig- 
inal lenna (edges). It is shown, that there are many cases 
where the FVM local variances are greater on the edges 
(pink pixels) something that is desirable and means that the 
FVM filter preserves the edges better than VM filter does. It 
is also shown that the VM local variances are greater (green 



Table 1: The SNR of the FVM and VM filters applied on the 
image lenna, corrupted with different values of impulsive 

(percentage of corrupted pixels p=O.l, 0.2) and Gaussian 
noise (noise standard deviation s=O,10,20). 

Impulsive 
noise (p) 

0.1 

0.1 

0.1 

0.2 
0.2 
0.2 

Table 2: The average of the local variances 5 when the FVM 
and VM filters are applied on the image lenna, corrupted 
with different values of impulsive (percentage of corrupted 
pixels p=O, 1,0.2) and Gaussian noise (noise standard devi- 

ation s=O, 10,20). 

1 Impulsive 1 Gaussian 11 F’VM VM 

pixels) in most cases in homogeneous regions something 
that is undesirable and is reduced by using FVM filter (red 
pixels). 
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