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ABSTRACT 

This paper proposes the use of min-max functions as a 
model for the interpolation and reconstruction of missing 
image data. It is shown how an interpolation equation 
based on these functions is formed and differentiated. The 
resulting solution is not closed form, therefore the derived 
gradient expressions are employed as part of various numer- 
ical optimisation schemes. Different interpolations can be 
found by using the squared and absolute errors - the lat- 
ter presents a more complicated solution which is discussed. 
Results are shown for the interpolation of missing data in 
an image. These are compared with interpolants derived 
using a 2D AR model and conclusions are drawn about the 
suitability of the new technique for reconstructing different 
image features. 

1. INTRODUCTION 

Bright and dark blotches that represent areas of missing 
pixels are types of degradation that appear frequently on 
film and video. Often the damage is bad enough that the 
original image data is completely obliterated. This paper 
proposes an interpolation scheme based on min-max func- 
tions for reconstructing such areas of missing data. 

Previous work has involved interpolating the missing 
data using an AR model/predictor as a basis for the inter- 
polation [3],[1]. This method reconstructs fine image detail 
well, but unfortunately smooths out edges, which are very 
important for the visual appreciation of an image. The aim 
of the work is to demonstrate the interpolation capabilit- 
ies of min-max based interpolation and to show that the 
scheme performs differently to the AR based method, prin- 
cipally with better reconstruction of edges. 

The use of the min-max predictor produces a system 
of non-linear equations which are solved numerically. The 
solution is made more efficient by employing the analytic 
gradient expressions that this paper shows how to calculate. 
These expressions also show that local minima can arise, 
which complicates the optimisation strategy. The strategy 
used to produce the results in this paper is described in 
section 4. 

The presentation of results in this paper is split into two 
parts. The first discusses interpolation using the squared 
error and presents a reconstruction of two images using min- 
max interpolation and AR interpolation. 

The second section presents the use of the absolute error 
for min-max based interpolation. Results demonstrate how 
this differs from the use of the squared error. 

Finally, conclusions are drawn in section 7 about the 
suitability of min-max based interpolation for the recon- 
struction of missing data in images. 

2. INTERPOLATION 

Linear interpolation using a multidimensional AR model/ 
predictor is used in [3]. The underlying assumption in this 
interpolation scheme is that the interpolated data can be 
determined by choosing values that minimise the sum of the 
squared prediction errors over the missing area. The model 
coefficients are estimated using weighted least squares to 
annul the effect of the missing data. It is then possible to 
derive a closed form solution to the resulting set of interpol- 
ation equations. Detecting the missing areas can be posed 
as a separate problem, discussed in [2]. 

This paper proposes the use of the min-max function 
as the predictor in a non-linear interpolation scheme. An 
appropriate min-max function for a set of data can be de- 
termined using stack filtering methods ([6], [4] and [7]). 

The min-max signal model - considering here a 1-D sig- 
nal, y, for simplicity - is 

y(n)=f*( . . . . y(n-2),y(n-l),y(n+l) ,... )+&* (1) 

where fm is a min-max function of pixels not including y(n) 
and &n is some prediction error (or excitation or residual). 
A prediction equation, (l), may be written at every pixel 
site that involves a missing pixel either at that site, or in the 
support of the predictor. Then, the sum of the squares of 
the prediction errors, E = x*&i, is minimised with respect 
to the values of the missing pixels. 

It is possible to derive analytic expressions for the de- 
rivatives of E and this is described in next section. 

3. DIFFERENTIATING THE 
INTERPOLATION EQUATION 

The first step to differentiating E uses the chain rule: 
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where y(i) is one of the missing pixel values. 

The next step is to determine w. For this the 
following results are used: 

(3) 

amw), way(i) = 4k - ~(4) (4) 

where u(k) is the unit step function and Ic is a min-max 
function that does not depend on y(i). 

The difficulty that remains is to write down the derivat- 
ive of a given min-max function using these standard forms. 
A min-max function, f,,,, can be written as the maximum 
of a series of minimums, some of which depend on y(i) and 
some of which do not, for example 

mat(min(gl), min(gz), min(g3, y(i)), min(g4, y(i))) = 

maz(min(gl), min(g2), min(maz(min(g3), min(g4)), y(i))) 

where gi denotes a list of variables that does not include 
y(i) (for example y(n - 3), y(n - l), y(n + 1)). 

It can be shown that 

z = u(y(d) - maz(min(gl), min(g2))) 

xa(maz(min(g3), min(g4)) - y(i)) (5) 

The proof of this result involves realising that the fol- 
lowing conditions must apply for fm to be y(i) and the 
derivative equal to 1: 

mnz(min(g3), min(g4)) > y(i) 

and 

maz(min(gl), min(g2)) < y(i) 

and that in all other cases fm is not y(i) and the derivative 
is 0. 

‘The method outlined above can also be used to differ- 
entiate a min-max based interpolation equation formulated 
using the absolute error. The following formula will be use- 
ful for the first stage of this differentiation: 

(6) 

The minimum of the error equation is to be found when 
the differential is zero. Examination of a typical differen- 
tial shows that it is possible to have more than one min- 
imum. Some occur when one or more of the unit step func- 
tions equal zero. By differentiating again these can often 
be shown to correspond to points of inflexion. However, 
the equations show that they can also correspond to local 
minima. This is an important consideration when choosing 
the optimisation strategy. 

4. OPTIMISATION STRATEGY 

Minimising an error equation based on a min-max function 
requires much care. Gradient information can help greatly 
to find the route to the minimum, but sometimes local min- 
ima occur, so the strategy chosen must reflect this. 

The search for the minimum is normally performed us- 
ing simulated annealing (described below). This technique 
is used to avoid converging to a local minimum. Conjug- 
ate gradient methods (described below) are used to find the 
minimum when it is thought that local minima will not be 
encountered. These methods use gradient information and 
sre more efficient than simulated annealing. In the results 
presented next, only the reconstruction of the hair texture 
of the mandrill exhibited local minima and required sim- 
ulated annealing. The smoother areas were interpolated 
using conjugate gradient methods - as a check they were 
compared to results using simulated annealing, which took 
longer to obtain, 

Each method was implemented using the algorithms 
supplied with the book, Numerical Recipes in C [5]. When 
using conjugate gradient methods the derivatives must be 
used during the line minimisation and it is necessary to add 
a check on the derivative in order to ensure that the method 
does not stop at points of inflexion. If it is found that a 
derivative that is equal to zero corresponds to a point of 
inflexion, the derivative is set to the value of the derivative 
below this point. 

The simulated annealing algorithm is based around an 
algorithm that transforms t.he points of a simplex so as to 
search for the route that minimises the error. In order to 
avoid local minima the points are randomly fluctuated each 
time they are observed and new points are accepted if they 
lead to an error that is less tha.n a sum of the previous 
error and a positive random fluctuation. The amount of 
fluctuation is controlled by a parameter known, in analogy 
to physical processes, as the temperature. 

At each temperature the number of iterations performed 
is equal to 50 times the number of missing pixels. The 
temperature is reduced by 20% at a time, from an initial 
value equal to twice the maximum error encountered for all 
the points in the initial simplex, until the temperature is 
less than 0.5. At this point the temperature is reduced to 
0 and the minimisation continued using conjugate gradient 
methods. 

These methods are very computationally expensive, es- 
pecially when compared to the closed form solution of a 
system of linear AR based interpolation equations. 

5. RESULTS: SQUARED ERROR 

Figure 1 shows interpolation results for three edge features 
in an image called ‘regions’. The areas interpolated are 
shown as bright squares in the first of these images. 

Conjugate gradient methods were used to minimise the 
min-max interpolation equation and the predictor used was 
a seven by seven median predictor, with the top left-hand 
position missed out to give an odd number of positions in 
the support. The position of the predicted pixel was located 
at the centre of the support. Around 25 iterations were 
required in each case until all the gradients became zero 



(b) 

Fig ure 1: (a) Locations of missing data. (b) Detail of im- 

age reconstructed using min-max based interpolation. (c) 
Det #ai1 of image reconstructed using AR based interpolation. 

Figure 3: Detail of image reconst,ructed using min-max 
based interpolation. 

Figure 2: Locations of missing data. (Some blocks have 
been placed over edge features.) 

Figure 4: Detail of image reconstructed using AR based 
interpolation. 



Figure 5: Absolute difference between image reconstructed 
using min-max based interpolation and the original image 
(scaled by a factor of 2). 

Figure 6: -4bsolute difference between image reconstructed 
using AR based interpolation and the original image (scaled 
by a factor of 2). 

or very small, except for the corner feature which required 
40. The initial values were chosen randomly from a uniform 
distribution between 0 and 255. 

In the case of the .4R interpolation the same predictor 
support was used except that the top left-hand position 
was not missed out. Note that for the AR interpolation, 
which involves matrix inversion, a small amount of noise 
was added to the image to avoid ill-conditioned matrices. 

These figures illustrate that the min-max based inter- 
polator interpolates edge features very well, but both meth- 
ods have problems with the corner feature. It also shows 
that the AR interpolation sometimes has problems with 
edges. Although the coefficients were chosen to ensure that 
the vertical and horizontal edges were well reconstructed, 
this was not possible for the diagonal edge and the result is 
a smudge. 

Figure 2 shows a detail of the image ‘mandrill’ with 
areas of missing data, 6 by 6 pixels in size, and figure 3 
shows the image reconstructed using min-max based inter- 
polation. Simulated annealing was used to minimise the in- 
terpolation equation. The predictor used is a seven by seven 
median predictor, with the top left-hand position missed 
out to give an odd number of positions in the support. The 
position of the predicted pixel is located at the centre of the 
support. 

Figure 4 shows the image reconstructed using AR based 
interpolation. The same predictor support was used (except 
that the top left-hand position was not missed out). 

Figures 5 and 6 are difference images showing the ab- 
solute difference between the reconstructed images and the 
original images. The mean absolute errors over the recon- 
structed areas are 19.66 for the min-max based interpola- 
tion and 24.02 for the AR based interpolation. 

In general the interpolated regions for both methods 
appear to fit in well with the rest of the image. It appears 
from the difference image that the min-max based interpol- 
ations fit in better - however the extra activity shown in the 
difference image of the AR interpolation in the blocks cor- 
responding to the hair texture actually highlights the better 
reconstructions. It, is perhaps surprising that an interpol- 
ation scheme based on a median predictor can reconstruct 
the hair texture so well, though at times it looks a little 
flatter than the AR result. The AR interpolation has re- 
constructed the hair texture well, but has not performed as 
well as the min-max interpolation in the block on the left 
of the eye and the block over the diagonal strip on the flat 
region to the left of the nose. 

6. RESULTS: ABSOLUTE ERROR 

Using the absolute error for min-max based interpolation 
does not necessarily produce one optimal interpolant. For 
example, using the predictor y(n) = median(y(n-1), y(n- 
2), y(n - 3)) with the step sequence 

o,o, 0, *, 100,100,100 

where * indicates a missing pixel , the optimal interpolant 
is found to be any value between 0 and 100. However, note 
that appropriate values for the interpolant are the values at 
the extremes, namely 0 or 100. 



With two missing pixels in the sequence 

o,o, 0, *, *, 100,100,100 

the minimum of the error surface is a triangular plateau. 
The vertices of the triangle are (0, 0), (0,100) and (100,100). 
All these values are appropriate interpolants of the missing 
pixels. 

For more complex cases, such as with images, one global 
minima does often occur. In csses where it does not the sum 
squared gradient around the interpolated region is employed 
to determine a unique interpolant. The implementation in- 
volves starting an optimisation routine at the ambiguous 
result, but employing this different error criterion to ex- 
plore the plateau. The search is not allowed to increase the 
absolute error. 

Regions of constant error can also occur in the error 
space at locations that are not at the minimum of the func- 
tion. Simulated annealing was used to obtain the results 
obtained in this section, but if conjugate gradient methods 
are used then this needs to be taken into account. 

Figure 7 shows the ‘regions’ image from the previous 
section. Once again it is interpolated using the same 7 
by 7 median predictor as in the previous section, but this 
time the interpolation is based on the absolute error. In 
every case except the corner, multiple solutions were found 
and the most appropriate was determined according to the 
method described above. 

Figure 7: Regions image reconstructed using min-max 
based interpolation and the absolute error. 

In the case of the corner the method has very neatly cut 
the corner off. This illustrates that the use of the absolute 
error can lead to interpolations that are less smudged. 

7. CONCLUSION 

This paper has shown how to construct a non-linear inter- 
polator based on min-max functions and how to calculate 
the derivative of a given min-max based error equation. The 
derivatives show that the minimisation of the error equa- 
tion is a complicated problem, but one which can be solved 
using a combination of simulated annealing and conjugate 
gradient methods. 

The results presented for the squared error case show 
that the min-max based interpolator gives a pleasing re- 
construction that performs well for different image features. 
Results for standard applications of min-max filters or re- 
cursive min-max prediction were not shown as it is clear 
that they cannot perform as well for this problem. 

The results for min-max based interpolation were sim- 
ilar to those obtained using AR. based interpolation, though 
this had the advantage of being able to optimise its coef- 
ficients. The main differences are that sometimes (though 
not always) the hair texture on the mandrill is worse when 
reconstructed with min-max based interpolation, but edge 
features are reconstructed better. 

Min-max based interpolation using the absolute error 
criterion involves a few more considerations because there 
are regions of equal error in the error space. The paper 
has proposed solutions to the problems that this gives and 
shows that the use of the absolute error can lead to less 
smudging of reconstructed edge features. 

The huge amount of computation is an important factor 
that limits the usefulness of min-msx based interpolation, 
especially as AR based interpolation yields an efficient closed 
form solution. 

(More information can be found along with examples of 
reconstructed images, on the main author’s webpaqe: 
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