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ABSTRACT 

Vector Median (VM) filters are known to globally perform 
better than scalar independent median filters around edges. 
In this work, we examine the filtering of vector edges cor- 
rupted by scalar impulsive noise. We show that VM per- 
formance is highly dependent on the relatirc magnitude of 
the impulses, the noisy component and the noise-free com- 
ponents of the edges. This charact,eristic gives some indica- 
tions for adequately choosing the norm (Li /Lz) of the VM 
filter and the standard (RGB/YUV) of data representation. 

1. INTRODUCTION 

Scalar median filtering is known to produce artifacts when 
applied independently to all channels of a multi-component 
(vector) signal. Such artifacts can be observed around edges, 
when filtering a color image embedded in an impulsive noise. 
In order to take advantage of the particularity of multi- 
component signals, vector median (VM) filters have been 
introduced [l]. Simulations have shown that VM filtering 
can partly avoid these artifacts of the scalar independent 
median, also called “marginal mediar? (mm) filter [2], but 
a theoretical proof has not yet been given. Some statisti- 
cal results are presented in [l] and [3], but the considered 
input signal is always a constant vector corrupted by addi- 
tive noise, and in this case, mm filter is often preferable to 
VM filter. Since experiments indicate that, on noisy edges, 
VM can work better than mm filters, it is of great interest 
to theoretically compare mm and VM filter outputs, when 
the filter’s input is a noisy edge. Such an approach was 
also used in [4]. Median type filtering being well suited for 
“heavy-tailed” noise, we also consider edges corrupted by 
impulsive noise. 
After some further precisions about the considered input 
signal, in Section 2 we express the output of the VIM filter, 
defined with both the L1 norm (leading to the VMLi fil- 
ter) and the Lz norm (VMLs filter), as a function of the 
impulse magnitude, with respect to that of the edge com- 
ponents. These results will be illustrated in Section 3 using 
a synthetic pattern of vector edges. A comparison of mm 
and VM filters is also presented in Section 4 with color nat- 
ural images, both in the RGB (Red, Green, Blue) and YUV 
(Luminance and Chrominance) standards. 

2. THEORETICAL ANALYSIS 

2.1. Assumptions of our model and simplifications 

l We consider a vector signal consisting of a vector edge 
affected by a scalar impulse. Vector edge means that the 
components of the edge are locat.ed at the same spatial po- 
sition for each component; however, the magnitude of the 
edge can be different on each vector component. 

l This model leads to 4 possible configurations for the 
“noisy component”, that is the signal component containing 
the impulse, as depicted in Fig. 1. 
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Figure 1: 4 configurations for the impulse and the edge. 

It can be seen that the configuration (a) is analogous 
to (c), as well as (b) is analogous to (d). Hence, we can 
confine our analysis to the (a) and (b) configurations. 

l Let W = 2N + 1 be the window’s size. If the window 
is not centered on the edge, as for the example in Fig. 2 
(using one-dimensional data and W=5), there are at least 
N + 2 samples equal to a same value we denote X, if no 
impulse is present, and there are at least N + 1 samples 
equal to X in the presence of one impulse, no matter where 
this impulse is located. 

So, in the case of an “uncentered window”, the output of 
the filters (mm, \‘ML~ and VMLs) is always equal to this 
value X. The only window position we have to consider 
in the following also corresponds to the “central position” 
(window centered on the edge). 

l The edge can be either ascending or descending on the 
“impulse-free” components; this does not affect the analysis 
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Figure 2: Example of a window being uncentered on the 
edge. 

of the mm, VMLl and VMLz filter output. 

In conclusion, without loss of generality, it is sufficient 
to analyze the output of the mm, VMLr and VMLz filters 
to a vector edge, ascendant on its noisy component, where 
the scalar impulse (which can be either positive or nega- 
tive) affects a sample of the low level, and where the sliding 
window is centered on the edge, as it is summarized in Fig. 
3. The only constrainst of our model is that there is no 
more than one impulse in the window, which is a realistic 
assumption when the probability of impulse occurence is 
not too high. 
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Figure 3: Configuration to be studied (magnitude of each 
edge component and of the impulse are variable). 

2.2. Principle of the analysis 

According to the simplifications mentioned in section $2.1, 
the samples included in the window can be split in 3 classes 
: there are N vector samples corresponding to the low edge 
level, denoted (l), N vector samples of the high edge level, 
denoted (2), and one vector sample corrupted by a scalar 
impulse, denoted (i). 

The vector median filter is defined as [l] 

2N+l 

3=1 

where L, is the considered norm (LI or Lz). 
In our case, arg minz,ew (.) is one of the 3 vectors (l), (2) 
or (i). The VM filter can be rewritten as: 

YVML, ==g min (&,dz,d,), 
(1)O)d:) 

(2) 

where 

I 

4 = C;::' 11(1)-s,II~, = Ndn +dlt 

dz = C::;’ I@) - zJllrA,p = Ndlz + dzz (3) 

d, = C;=";" II(i) - I~IIL~ = N(dl, + dz,) 

with: dlz = ll(2) - (l)ll~,, dli = II(l) - (i)llL, and d2i = 

II@) - (W,~ 

Using this notation, the VM filter’s output can be ex- 
pressed as 

(4) 

When dl, dz or d, are equal, an additional rule is re- 
quired to determine the VM filter’s output. This particular 
case is not of interest for our analysis and will be later ig- 
nored. 

2.3. The VMLl filtering 

Theoretical analysis of the VM filter, using L1 metric, can 
be split in 3 cases, according to the magnitude of the im- 
pulse. In the following, A denotes the magnitude of the 
noisy edge component. 

2.3.1. Negative impulse 

In Fig. 4, we represent t,he 2N+l vectors in a two-dimensional 
space (X,Y), where the negative impulse affects the compo- 
nent Y of a vector (1). 

Using the L1 metric, dzi = dlz + dl;, which involves 
dsi > dli. Combining this with equation (3), we get 

l dz>dl, 

l d, = Ndlz + 2Nd,, > d,. 

So, according to eq. (4), the output of the VMLr filter 
corresponds to vector (1). 

2.3.2. Positive impulse whose level is lower than A 

This con&ration is illustrated in Fig. 5 for two-dimensional 
data. In this case, dlz = dli + dzi. Substituting in eq. (3), 
we get 

. dl = N(dli + hi) + dli > d;, 

. dz = N(dls + dzi) + d2z > di. 

Hence, the output of the VMLr filter corresponds to the 
impulse (i) . 
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Figure 4: Input vectors in the 2-dimensional space (X,Y), 
with a negative impulse. 
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Figure 5: Input vectors, with a positive impulse whose mag- 
nitude is lower than the noisy edge component. 

2.3.3. Positive impulse with a level greater than A 

The corresponding case is reported in Fig. 6, for two- 
dimensional data. We then get dli = A + 6 and dz, = 
dlz - A + 6, leading to 

dl = Ndlz + A + 6, 
dz =(N+l)d12 -A+& 

di = Ndl2 + 2N6. 

Thus, 

The output of the VMLl filter is therefore given by 

ifA<%: YVMLl = 
(i) if&<& 
(1) otherwise ’ 

ifA>%: !/VML, = 
(i) if6<* 
(2) otherwise ’ 

Figure 6: Input vectors, with a positive impulse whose mag- 
nitude is greater than the edge noisy component. 

2.4. The VMLZ filtering 

According to our model of signal and noise, VMLz filtering 
is based on eq. (3) and (4), where the distances are com- 
puted using LZ metric. The analysis can be again split in 3 
cases. 
Let us define y as the magnitude (Lz) of the edge without 
its noisy component, so as A2 + y = di2. 

2.4.1. Negative impulse 

We refer to Fig. 4. Using LZ metric, we get 

l d2;= 7’ + (A + 6)2 > 6, so dz, > dl,. According to 
eq. (3), we obtain dz > dl. 

l d, = Ndl, + N y2 + (A +6)2 > Ndlz +dl;, which in- 
volves di > dl. 

Thus, according t,o eq. (4), the output of the VML2 filter 
is the vector (1). 

e.4.2. Positive impulse, with 0 < 15 < A 

We, now, refer to Fig. 5. The use of LZ metric leads to 

4, = 6, 
dzt = ,/y2 + (A - J)2. 

Substituting into eq. (3), 

o di<dl * 6<2 
A - kdlz N-l 

1 - k2 
, with k = - 

N 

l di < d2 H 6<61 (5) 

where 61 = 
dlz-k=A-k 2d:2-2Ad,l-kay2 

I-k2 (proof of (5) is 

given in the appendix). 

* if y > A, which is equivalent to d12 > &A, then 

$ > A; the inequality 6 > $ becomes impossible (con- 
trary to the hypothesis of $2.4.2). Thus, dl < dz, and we 

get 



!/\/ML1 = 
(i) if 6 < 2 “i~“,“a” 
(1) otherwise 

* case where y < A : the output of the VMLz is 
given by 

YVMLl = 

(i) if 6 < 2* 

(1) if2*<6<% . 

(2) if6>$ 

2.4.3. Positive impulse, with a level greater than A 

A two-dimensional representation is given in Fig. 6. We 
have 

1 

dli = A+6 

dzi = dm . 

l It can be shown that d; is always greater than dl. The 
filter’s output is then (1) or (2). 

l dl < d2 ($ 6 < +$ Thus, 

* if y < A, dz < dl, that is yVM& = (2) 

*ify>A, YVML~ = 
(1) ifd<w . 
(2) otherwise 

2.5. Schematic synthesis of theoretical analysis 

In order to summarize the different configurations we en- 
countered in the analysis, outputs of the VMLi and VMLz 
filters are given in Fig. 7; output of the marginal median 
is also presented as a matter of comparison. This clearly 
shows that the output of the filters is highly dependent 
upon the magnitude of the impulse, with regard to that of 
the noisy edge component. The different configurations we 
studied correspond to different relative contributions of the 
noisy and noise-free components in the global norm of the 
edge. This point has a practical interest which is discussed 
in ‘$4. We use the following notations: 
rl+ : A > %; r2+ : A > 3. Conditions “rI-” are dual 

with “i-l+” (1 = 1,2), i.e. the symbol < replaces >. 
Thresholds are defined as tl = A + z&, tz=A++$+, 

tl=A+~,t4=&5=2~. 

3. ILLUSTRATION USING SYNTHETIC 
IMAGES 

In order to illustrate the results of the precedent theoreti- 
cal analysis, in Fig. 8 we give comparative outputs of mm, 
VMLi and VMLz filtering, using a 5 pixels horizontal mask. 
Input signal is an R-G-B test pattern of vertical contours, 
which are embedded in a channel-independent impulsive 
noise. The magnitude of these “salt-and-pepper” impulses 
is increasing when going from the left to the right of the 
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Figure 7: Filter outputs for the marginal and vector median 
(VMLi, VMLz) filters for an edge, with low level (1) and 
high level (2), corrupted by an impulse i. (The notation is 
completely defined in the text.) 

test image. 
For this particular image, the magnitude of the edges is 
equal for each signal component, and constant over the im- 
age, so that 

* d12 = 3A, using L1 norm, leading to the case “rl-” in 
Fig. 7 (i.e. A < %) 

* d12 = &A, using LZ norm, which involves A < 3, 

thus referring to the case 92-“. 
These two cases correspond to the grey part in Fig. 7. 

Both theoretical and simulation results clearly show the 
global superiority of VM with regard to mm filtering in 
this case of edges corrupted by scalar independent impulses. 
Secondly, the “surprizing” different behaviors of VMLi and 
VMLz filters emphasize the fact that an a priori knowledge 
of impulse levels could drive the choice of the norm. 

4. FILTERING OF COLOR IMAGES 

Simulations have also been driven using natural color im- 
ages. In Fig. 9, we report the results of mm and VM filter- 
ing, where the R-G-B input image “boat” is corrupted by 
channel-independent impulsive noise. This figure is a clear 
illustration of the global superiority of VM over mm filter- 
ing, for R-G-B images corrupted with this kind of degrada- 
tion, especially when looking at the edges (ropes and hull). 
The same image, now in the Y-U-V format, is presented in 
Fig. 10; the 3 components are affected by scalar indepen- 
dent impulses. In this case, the difference between marginal 
and vector median filtering is weak; this is because artifacts 
on the edges caused by mm filtering are less sensitive in the 
Y-U-V standard; another reason is relative to VM filter: 
edge magnitude on the Y component is often consequently 
greater than those on U and V channels; so, impulses on Y 
often correspond to the cases ‘?I+” and “r2+” of Fig. 7, 



which more often produce erroneous output values. Thus, 
the superiority of VM over mm filtering is especially effec- 
tive in R-G-B standard. 

5. CONCLUSIONS 

In this paper, we analyzed the response of the vector me- 
dian filter (defined with both L1 and Lz norm) to vector 
edges corrupted by channel-independent impulsive noise. In 
particular, we compared vector median with marginal me- 
dian filtering, which is known to produce artifacts with this 
type of input signal. Our theoretical analysis confirms that 
the vector median globally outperforms the marginal me- 
dian filter with such input signals. However, this work em- 
phasizes that the filtering performance is highly dependent 
on input data and on the choice of the norm used for the 
VM operator. Especially, the relative magnitude between 
impulses and edges, as well as between edge components, 
considerably influence the filter’s output. 
Consequently, a priori knowledge of impulse level, with re- 
gard to the input signal, should be a determinant informa- 
tion in the design of the filter (choice of the norm). We also 
showed that VM filtering works better when edge compo- 
nents have comparable magnitudes; hence, VM is expected 
to perform better in R-G-B than in Y-U-V standard, where 
edge magnitude on the Y component is often significantly 
higher than in other channels. Theoretical results have also 
been illustrated using synthetic and natural color images. 

6. APPENDIX 

Mathematical proof of eq. (5): 

k2A - dlz 
di < dz H 6’ + 26 1 _ kZ + df2 > 0. 

Let us define the polynomial P(C) as 

P(6) = 6’ + 6 
k2A - dlz 

l _ k2 + d:z. 

Reduced discriminant Q of P(6) is 

Q = Q(A) = ‘k;fs-$‘2 - d:zr 

Q(A) > 0 ti k2A2 - 2dlzA + (2 - k2)dtz > 0 

* Q’(A) >O, 

with Q’(A) = k2A2 - 2dlzA + (2 - k2)d:,. The two roots 

of Q’ are A, = dlz and A2 = sdrz ; thus 

Q’(A)>0 * A<dlzorA>Az. 

Condition A < dlz is always satisfied, so that Q(A) is al- 
ways positive. Hence, P(C) has two roots, 61 (as defined in 
s2.4.2) and 62 (62 > A). Then, 

P(h)>0 H 6<61 ord>&. 

Because 6 > 62 > A is contrary to the hypothesis of $2.4.2, 
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Figure 8: R-G-B noisy test pattern : after mm, VMLI and VMLz filtering (resp. top, ccntcr and bott.om). 

Figure 9: R-G-B noisy image, filtered by a 3*3 marginal median (left) and by a 3*3 VML2 filter (right). 

Figure 10: Y-U-V noisy image, filtered by a 3*3 mm filter (left) and by a 3*3 VML2 filter (right). 


