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ABSTRACT 

An image erosion architecture based on the CNN frame- 
work well suited for a VLSI implementation is presented. 
The erosion process can extract the center of gravity of 
an object coded by binary levels with a dynamical border 
peeling process. We first demonstrate that. such an operator 
can not be implemented with the original model of CNN. 
Hence, the modification of the coupling function between 
cells is discussed. It is shown that an exclusive-or like gate 
(XOR) can be used to achieve a contour peeling process. 
The behavior of the new CNN model is invest.igated on a 
1D chain of cells. The principle is then extended to a 2D 
map and is illustrated with a few numerical simulations. 
A reliable implementation approach of this CNN with its 
nonlinear cloning template is discussed in t,he appendix. 

whole network, its operating is controled only by a small 
set of weights, the so-called cloning template (CT), which is 
formulated with two matrices and one scalar (refer to cqua- 
tion (1) next section). Recent developments have proven 
the relevance of the CNN concept, as a generic smart ret:ina 

[41. 
This paper presents a special class of CNN with a non- 

linear CT which is intended to execute an ultimate erosion 
on a binary image. The erosion process is discussed in sec- 
tion II. It is shown that a CNN with a linear CT can not 
implement such an operator. Then, section III deals with 
the nonlinear coupling scheme. We show that an exclusive- 
or gate as the neihborhood feedback operator can play the 
role of the CT. The concept is illustrated with some numer- 
ical simulations. An elegant VLSI implementation of this 
CT in standard CMOS technology is then discussed in the 
appendix. 

1. INTRODUCTION 

2. THE ULTIMATE EROSION OPERATOR 
Vision systems are gaining increasing attention on account 
of their potential in mobile systems control. These appli- 
cations have clearly shown the interest of merging image 
sensing and processing on the same substrate leading to 
the concept of artificial retinas, also called smart retinas. 
Several smart retinas [l] have been reported since the pio- 
neering work of R. F. Lyon on the optical mouse. Most im- 
plementations rely on analog processing rather than digital 
computing, thus taking benefit from the natural nonlinear- 
ities of silicium and a continuous time dynamics. 

The object’s location is easily taken from its barycenter 
which can be viewed as the result of an erosion process. 
This is similar as peeling the contour until a point remains 
alone as sketched in Fig. 1. 

.For target tracking or target marking applications, the 
on-chip extraction of the object’s X-Y coordinates can allow 
high speed tracking and can be used for data fusion systems 
in conjunction with other signals. Our goal is to implement 
such an operator with the general purpose image process- 
ing grid array architecture of active elements, the so-called 
Cellular Neural Network model. 

It should be noticed that our definition of the erosion 
is close to the ultimate erosion filter defined in morpho- 
logical mathematics theory [5]. As a matter of fact, the 
ultimate erosion is the result of several elementary erosion 
passes which are stopped just before the removal of the last 
isolated pixels. An elementary erosion is usually expressed 
X3: 

PiXdi,j = Min ({Pixelk,), (k,l) E N(i,j)}) 

where N (i, j) is the set of pixels in the neighborood of the 
pixel (i, j). 

Cellular Neural Networks (CNN) have been the subject 
of a great interest since their introduction by Chua and 
Yang in 1988 [2]. Theoretical analysis as well as applica- 
tions and implementations have been widely reported in t.he 
literature [3]. The key features of CNN are a discrete 2D 
topology together with a continuous time dynamics and a 
connection pattern reduced to the close vincinity. Further- 
more, as the connection pattern is homogeneous among the 

In the remainder of this paper, the word erosion is taken 
in the sense of “ultimate erosion”. .4ctually, this operator is 
close to a thinning or skeletization process, except that the 
resulting image is made up of isolated points rather than 
one-pixel-thick connected segments. A CNN for thinning 
images has already been presented [6]. However, an erosion 
CT can not be derived from this work due to two VLSI 
design considerations: 
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Figure 1: Principle of erosion: the object contours (a) are 
peeled (b-c) until a unique pixel remains (d). This point is 
the object’s barycenter if the peeling process is isotropic. 

l Moreover, the interaction radius is not unity for some 
planes of CNN. Once again, this is in conflict with 
the plane structure of an integrated circuit since 3D 
technologies’ are not available on-the-shelf. Thus, 
long range signals needed by an interaction radius 
greather than one would lead to a significant silicon 
area lost by routing wires. 

Starting from these facts, the erosion CT needs to be 
designed from scratch. A large panel of methods for syn- 
thetisis CT have already been reported. Among them, the 
transcription of pixel-based rules into a set of inequalities 
[7] is a promising approach for this application. 

According to [2], the dynamics of a CNN’s pixel is mod- 
eled as2: 

&= 
dt -xij + A 8 yij + B 8 uij + I 

= f(Xij) 
(1) 

YU 

where f() is a piecewise linear threshold: 

f(x) = ; (Ix + 11 - Ix - 11) (2) 

which codes the binary output levels as: white = -1 and 
black = +l. uij are the pixels of the image and the initial 
conditions are: X(0) = U. Equation (1) reflects a dynami- 
cal process which transforms a grey level image into a black 
and white one. The threshold function defines three do- 
mains, in which the dynamics is linear: 

De : x < -1 Do : x E [-l,+l] D+ : x > 1 

.Taking into account the isotropy of the erosion process, 
the matrix of the CT should have the form of: 

The objective is therefore to determine the CT which 
performs an ultimate erosion process. The set of possible 
solutions is the intersection of a list of inequalities drawn 

‘Even though 3D technologies are a growing field of interest, 
they are not yet proposed by multi-project fundry services for re- 
search purposes. These technologies, based on stacked SOI layers 
obtained through the recrystallization of poly-Si by an energetic 
beam, need state-of-the-art high cost fabrication processes. 

2Here @ denotes a two-dimensional correlation product at the 
pixel (i,j): 2 @ wij = c Zk,lWk+i,l+j. This model is expressed 
unitless, ie: R = C = lm [2, 31. 

up with respect to a set of pixel-based rules. These rules 
include both the constraints of t.he initial conditions on the 

dynamics and of the ones that must be satisfied by the 
stationary st.atcs. Hence, t.hc behavior of a single pixel with 
respect to its neighbors is given by: 

l A black pixel surrounded by height other black ones 
must remain at the same state (k(O) 2 0 and Z(W) 2 

1). 

l In the same way, a white one should never be changed 
(i(O) 2 0 and x(oo) 2 1) since it belongs to the 
background. 

l On the other side, if a black pixel belongs to a border, 
it must be turned white (1(O) < 0 and x(00) 5 -1). 

l At last, an isolated black pixel must not be switched 
since it is the desired final state (x(00) 2 -1). 

Combining these rules together with (1) leads to an 
empty solution. Since the inequalities are built on linear 
relations, a CNN with linear CT can not implement an cro- 
sion filter. Thus, the erosion process can not be viewed as 
a linear separation problem. 

3. THE NONLINEAR CT 

Like the thinning problem [6], the erosion problem is not as 
easy as it looks. Instead of analysing the question with its 
two dimensions, it might be helpful to discuss the nonlinear 
CT on a one dimensional chain of coupled cells. 

3.1. A 1D chain of coupled cells 

A chain is a one dimensional structure of coupled cells. Cells 
interacts with their nearest neighbors. Then, an object can 
be viewed as a black segment among white cells. The ero- 
sion process transfoms this segment into a unique black 
point, which is the center of the segment if the action is 
symmetric. 

The state dynamics of the ith cell can be expressed as: 

dXci 
- = -Xi + filJi + 7 (Xi-l, Xi+l) 
dt (3) 

where yi is the cell’s output. Like in the CNN case, outputs 
are bounded by the threshold function f() which is defined 
according to (2). Furthermore, the global stability is guar- 
anteed if a > 1 [2, 31. The interaction is charact,erized by 
the function y(). Without any coupling, the cells should 
remain in one of the two stable states: black (y = +l) or 
white (y = -1). 

The coupling effect can be defined by two simple rules: 

l If a black point is surrounded by points of opposite 
color, its state must be switched to white (i < 0). 

l Otherwise, the point must remain the same (5 = 0). 

The first rule stands for the peeling action. It is easy 
to see that, at the beginning of operations, only the ends 
of the segment are affected by this rule because they are 
inevitably surrounded by a black and a white one. If the 
action is repeated several times, the peeling is propagated 
from the ends to the middle of the segment. This process 
is similar to a cascade of dominos as sketched in Fig. 2. 
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Figure 2: The erosion principle is based on a cascade of 
dominos. (a): chain of standing dominos. (b): the chain 
is perturbated at its ends, the dominos are pushed towards 
their neighbors. (c): the dominos fall is propagated step 
by step. (d): the process stops as soon as a unique domino 
remains upright. The principle is here depicted for the case 
of a chain made up of an odd set of dominos. It can be 
easely extend to the case of an even set, the two middle 
dominos would stand upright at the end of t,he operations. 

xi-1 xi+1 
s 
tit 

white white 0 
white black <0 
black white <0 
black 1 black 1 0 

Table 1: 

This principle applied to the ifh cell is condensed in 
table 1. As it can be seen, the coupling function follows 
a kind of exclusive-or (XOR) behavior. A design with a 
standard CMOS technology should certainly take benefit 
from this property. 

The y() function can now be expressed. First of all, it 
must be symmetric, ie: r(l,r) = y(r,l). Furthermore, the 
function can be expressed with respect to the sum of its two 
variables. Indeed, this function needs only two parameters: 

7th r) = 
0, Il+rl > T 

-5, Il+rl <T 

with s the negative step level and T the trigger’s threshold. 
In order to prove the correct operating of this new model 

and to bound the paramaters, a short analysis of the model 
is carried out. 

3.1.1. Equilibrium points 

As in the standard CNN model, a cell described by (3) has 
three equilibrium states according to the operating point of 
(2). Only zq- and xq+ are stable while xqo is unstable. 
Of course, a > 1 is a necessary condition to ensure global 
stability and convergence of the system. 

XQ+ =a+r XQ > 1 
XQ= XQO = & XQ E [-I; l] (5) 

xQ- =-a+7 xQ < -1 

Figure 3: Pixel inversion in the plane (x,5). Starting from 
black (a), the negative step imposed by y() pushed the dy- 
namic route downward, thus vanishing the black resting 
point (b). The route is then open to the white resting point, 
which has slightly moved on the left. 

Figure 4: Propagation of pixel inversion from front-left to 
right (zi(t)). The chain’s state is drawn along the y-axis 
while the time is drawn along the z axis. 

3.12. Pixel switching 

The only way for a black pixel to switch off is to be sur- 
rounded by a black one and a white one. Even though the 
system is modeled by a piecewise linear differential equa- 
tion, the expression of the state vector with respect to 
time is not an easy problem and would lead to a bulky 
time-series. In order to illustrate the switching principle, 
the discussion is here restricted to one cell with two static 
neighbors: a black and a white one. Then, starting from 
x(0) = xQ+ = a, its dynamic is as follows: 

da: 

z= 
-x + a.f(x) - s 

The action of y() persists since this cell is surrounded by 
two static pixels. The evolution of x(t) is made up of expo- 
nential branches. 

If the negative step (-3) is sufficient, the two rightmost 
equilibrium points disappear. The only remaining one is 
the leftmost one, which is < -1, thus representing a white 
point. This operation is depicted on Fig. 3. It is easy to 
understand that the lower bound of s is: 

smin = a - 1 (6) 
in order to garantee that XQ- is the only state. 

3.1.3. Propagation phase 

The switching mechanism has been depicted on an isolated 
cell. For a chain of cells, the pixel inversion gives birth to 



an imbalance which excites the next black cell and in turn 
switches it to white. This perturbation is then propagated 
step by step on each neighboring black cell. The behavior 
of the cascade of dominos is found again. 

The negative step of y() on the ith cell persists until 
lxi--l + xi+1 1 < T. Before the next switch is completed, 
lxi--1 + x;+ll < T is false and the perturbation stops. Fig- 
ure 4 illustrates this mechanism (the left neighbor of the 
first cell is a static white point). 

3.1.4. Stopping phase 

Before detailing the stopping procedure, it must be pointed 
out that the case of an odd chain and an even one must be 
investigated separately. Indeed, while an odd chain would 
lead to a unique black pixel at the end of the erosion process, 
an even one would lead to two black pixels. Furthermore, 
it should be noticed that the equilibrium points defined by 
(5) here define the equations of the null-clines of each cells 
(il = 0 and 22 = 0) [8]. 

The odd chain: the study of the stopping phase for an 
odd chain is carried out on a three cells structure which are 
enclosed with two static white pixels to bring the imbalance 
(x = XQ- = -a) as depicted on Fig. 5a. Thanks to a 
symmetry property (21 = xs), the system can be modeled 
by: 

{ 

+ = -21 + a.f(xl) + ?(-a + 22) 
+ = -22 + a.f(x2) + ~(2x1) 

The two null-clines are defined by (5) except when the 
coupling function is activated, ie: r(Z, r) = -3. In such a 
case, the only remaining equilibrium point is: XQ- = -a-s 
if 3 > smjn. This appears for the first cell while: 

x2 E [a-T,a+T] 

and for the second one while: 

TT 
XlE --- [ 1 2’ 2 

Starting from X(0) = (xQ+, xQ+) = (a, a), the trajec- 
tory must follow a pathway to reach a resting state which 
keeps x(00) = (white, black) = (< -1, > +l). This path- 
way is constraint by the null-clines for the two states. This 
is best illustrated in the plane (x1,x2) shown in Fig. 5a. 
Because its neighbors have an opposite state, the cell x1 
is kept under the influence of y(), ie: xQ1 = -a - s is 
the only possible resting state and dxl/dt < 0. This holds 
as long as 22 lies in [a - T;a + T]. On the opposite, the 
null-cline i2 = 0 is still defined by (5) except in the do- 
main x1 E [-T/2;T/2] where the only remaining equilib- 
rium point is also x42 = -a-s. As x2(0) = xQ+, it stays at 
rest until the first cell enter in [-T/2; +T/2]. Then, x2(t) 

begins to decrease (the coupling effect is activated for the 
second cell). As soon as xl(t) < -T/2, the dynamics of the 
first cell is attracted by XQ+ = +a. Thus, the final state is: 
XQ = {-a - s, +a} as previously asked for. 

The even chain: the stop of the processing is investi- 
gated on a chain of four cells enclosed by two static white 
pixels (Fig. 5b). As in the odd case, the model is reduced 

*I 
I I n+T 

n-T 

0-J) 1 -T-x , T-x , 

Figure 5: State plane (21x2) for an odd chain made up 
of 3 cells (a) and for an even chain made up 4 cells (b). 
Null-clines are drawn with solid lines while the trajectory 
is a dashed line. Boundaries of the basin of influence of 
the coupling function are drawn with dotted lines. The 
orientation of t.he velocity field of x1 or 22 is shown by the 
arrows according t.o their orientation. 

to a two degrees of freedom system thanks to symmetry 
considerations (xl = x4, x2 = 13): 

1 * = -XI + a.f(xl) +$-a + x2) 

F 
;iz' = -x2 + a.f(xz) +7(x1 + x2) 

The assumptions are the same as before. The start- 
ing state is X(0) = (a,a) and the resting one must keep 
x(00) = (white, black) valid. Once again, the trajectory is 
guided by the pathway const.raint by the null-clines. In the 
even case, the xl-null-cline is the same as for the odd chain 
whereas the x2 one is defined by 22 = af (x2) +y (x1 + x2). 
Thus, for the cell x2, the coupling function is activated 
while: 

This leads to a diagonal region in which i2 < 0 as 
sketched in Fig. 5b. If we want the final state to be the 
same as before, the line -T - 21 must lie above the resting 
point (-a - s, a) which yields: 

T<S 

3.1.5. Numerical simulations 

Figure 6 reports two simulations of a chain made up of an 
even and an odd number of cells initially excited by a black 
pixel and enclosed with a small numbers of white ones. 

The erosion process is clearly shown starting at the 
edges of the black segment and peeling it until a unique 
black pixel remains in the odd case (two pixels in the even 
case). Of course, the transient period length is a function 
of the size of the initial segment. 

3.2. Generalization to a 2D map 

The peeling principle has been introduced on a 1D chain. 
Extending it to a 2D map leads to this model of CNN with 
a nonlinear CT: 



Figure 6: cells’ output. (a): 11 black cells and 4 whites at 
each side of the segment. (b): the initial state is made up 
of 12 black pixels and the same number of white one. 
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Figure 7: Ultimate erosion on an arbitrary shape. (a): ini- 
tial image, (b): after 1 time unit (tu), (c): after 10 tu, (d): 
final state after 20 tu. 

SC 

&j 

-Xi.j + a[7 (Xi-l,j,Xi+l,j) + y(Xi,j--1,Zi,j+l)] 

= f (Xii) 

(7) 
where f(x) is defined as (2). A simulation is depicted on 
fig. 7. 

It should be noticed that (7) involves a 4-neighborood 
CT. 

4. CONCLUSION 

An new Cellular Neural Network nonlinear CT for binary 
image erosion has been presented. Its operating has been 
demonstrated for a one dimensionnal chain of coupled cells. 
Its capabilities have been illustrated through numerical sim- 
ulations in the two dimensional case of images. Its reliabil- 
ity for a VLSI implementation in standard CMOS technol- 
ogy will be briefly pointed out in the appendix. 

In order to decrease the area per cell, this nonlinear 
scheme can take benefit from the Full Range Signal (FSR) 
model developed by Espejo et al. 191. 

A forthcoming work would be to design another nonlin- 
ear CT for image skeletization using the same approach. 

5. APPENDIX: IMPLEMENTATION OF THE 
XOR 

. The coupling function has been identified es an exclusive-or 
gate (XOR). However, unlike the usual XOR CMOS gate, 
where input and ouput signal are voltages, our operator 
must be current output. 

Such a device can be derived from two CMOS inverters 
with their output ports shorted. Remember that a current 

V 

V 

W 

Figure 8: (a) Principle: an XOR cell with voltage input and 
current output. (b) The output is the sum of the two drain 
currents (Ml+M3). 

flows through a CMOS inverter gate while switching, it is 
easy to understand the operating reported on Fig 8. If V, 

and vb share the same state (high or low), the two invert- 
ers (Ml-M2 and x13-M4) are off, thus no current can flow. 
However, if V, and &, are in two complementary states, the 
two opposite transistors are open, allowing a current to flow 
from VDD to GND: 

l If V, is high and vb is low, the current sinks through 
Ml-M4. 

l If V, is low and vb is high, the current goes through 
M2-M3. 

A SPICE simulation of a complete cell is reported on 
Fig. 8b. 
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