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ABSTRACT

Positron emission tomography (PET) is a technique
that has opened new facilities to study the metabolic
activity of human body. In the last years many algo-
rithms have been developed for reconstructing tomog-
raphy images. The oftenly used maximum likelihood
expectation maximization algorithm (ML-EM) seems
to be a stable method and was developed by Shepp
and Vardi [1] in 1982. However, the ML-EM algo-
rithm causes some serious problems in the context of
the application considered. It is an iterative procedure
and converges to a stationary point, however, the re-
constructed image seems to be distored by superposed
high frequency noise. In this paper it is shown, that
the ML-EM-Algorithm is not based on significant sta-
tistical properties in our problem, which has been ver-
ified by respective investigations. It is shown, that the
algorithm converges to an ’optimal’ solution in a math-
ematical sense. The convergence characteristics of the
algorithm are discussed by means of examples.

1. INTRODUCTION

Positron emission tomography (PET) is a special form
of Computer Tomography (CT) with the following prop-
erties. The most important feature of PET is the use
of the emission of radioactive nuclides in contrast to
illuminating the patient by X-rays in classical tomo-
graphs. The mathematical description of X-ray based
CT and PET is the same. The measurements (pro-
jections) p(l,0) and the underlying image g(z,y) are
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Figure 1: Principles of Tomography

related via the Radon-Transform

p(l,0) = / / g(x,y)6(l — x cosf — sin f)dxdy, (1)
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where [ is the line coordinate for the projection under
the angle 6 and x, y are the cartesian coordinates of the
image (Fig. 1). The measured projection is the integral
of the emitted energy (PET) or the attenuation (CT),
respectively, along a line. This is illustrated by Fig. 1.

Measurements are made under different angels 6.
With this data it is possible to reconstruct the image of
one slice (plane) of the inspected object. The analytical



solution of (1) is given by
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9(x,y) = = p(l',0) —zdl'ds,  (2)
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with
l=xcosf +ysind. (3)

However, the numerical solution of the above integral
is very delicate due to the pole of the kernel at I’ = I.
Hence, alternative methods for reconstruction of im-
ages had to be developed. The most familiar method
is the filtered backprojection, which can be character-
ized as follows

T

g(,y) = /p' (zcosO +ysing,0)do,  (4)
0

where p/(l, 0) is the filtered (with respect to ) version
of p(l,8), and the transfer function of the filter is de-
scribed by G(jw) = |w|. In other words, the Fourier
transforms P’(jw, 8) and P(jw, d) of the signals p’(, )
and p(l,0) are related by

P'(jw,6) = P(jw,6)G (jw) (5)
— P (jw,0) |wl.

Although this method is numerical stable, the recon-
struction, however, is marked with radial distortions
caused by interpolation errors. Another method is based
on the attempt to solve the problem by dicretisation
and is known as algebraic method. More precisely, the
image g(z,y) is interpreted as a two-dimensional dis-
crete signal of finite size. Its samples (pixels) can be
arranged in vector form g = [g1, ..., g5]?. The projec-
tion signal is discretised in a natural way since measure-
ments are performed by an array of equispaced sensors.
FEach sensor signal is interpreted as a sample of the dis-
cretised projection. These samples are summarized to
a vector p = [py, ..., pp]? which is related to g via

P1 aix a2 - - Q1B g1
P2 az; a2 - - Q2B g2
N . . . , (6)
PD api1 ap2 - - AapB JaB
with
D
Zadbzl, b=1,..,B, (7)
d=1

where a = (agp) is a constant coefficient matrix that
describes the system. The coefficient matrix is sparse
and badly conditioned. The number of equations is

oftenly different from the number of unknowns in the
system above. Consequently, a direct inversion of the
system matrix a is numerically critical and thus, iter-
ative procedures for solving this system of equations
appear to be more promising. One of the most severe
problems associated with PET is the statistical fluctua-
tion of the radioactive emission processes which causes
noisy projection data. In order to reduce the influence
of these effects on the reconstructed image, the so called
ML-EM algorithm has been introduced by Vardi and
Shepp [1], where the samples of the image are modeled
as independent Poisson distributed random variables.

2. ML-EM ALGORITHM

In this section we have to distinguish explicitly between
random variables and their realizations (outcomes of
experiments, measured data). Since this aspect is of
fundamental importance for the correct interpretation
of our results, we represent random variables by capi-
tal letters and their respective realizations by the cor-
responding small letters. As just mentioned, the gen-
eration of photons in the body of the patient can be
modeled as a Poisson process. Consequently, the im-
age samples will be considered as Poisson distributed
random variables Gy, b =1, ..., B, with mean value

/\b = E{Gb} ) (8)

where F is the expectation operator. The random vari-
able G} itself can be considered [4] as a sum of indepen-
dent Poisson distributed random variables Wy, where
Wap models the number of photons detected in sensor
number d and emitted from image point b, i.e.

D
Gy = Z Wap 9)
d=1

and
D
9 = deb. (10)
d=1

Furthermore, it can be shown [4] that the mean values
Aab = E{Wap} are associated with ), via

Adb = Qb Ab, (11)

where the agp are defined by (6) and can be determined
from the geometry of the tomograph. Due to the in-
dependence of the random variables W, we can define
the likelihood function

)wdb

_ S —aaqp\p (adb)\b
N =TI]1]e — (12)
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However, in order to obtain parameter estimators with
small variances, large sets of measured data are re-
quired, which, however are usually not available in the
application considered.

In the next step, the log-likelihood function is con-
sidered where products in (12) are transformed into
sums

B D
L) = Wl =) (—amr (13)
b=1d=1
Fwgap In Ap + wap Inagp — ln(wdb!))7

where wgp is a realization of Wy,. In this equation the
quantities wgp, are unknown and have to be estimated
in the so called expectation step of the algorithm. This
is done in an iterative procedure where the conditional
expectation

oy =E {de

~[K]
pa A } (14)

is used and @gg represents the estimate of wg, in the

k-th iteration step, pq is the measured projection value

~[k
and )\[ ] in the estimate of A in the k-th iteration step.
As outlined in [4], this procedure leads to

_[k+1] pdadbxl[,k]
Wy == (15)

B ~
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Next, we consider the so called maximization step of
the ML-EM algorithm. In order to maximize the log-
likelihood function one has to set its partial derivatives
with respect to the unknown parameters A, to zero

5 LD .

S 2D (e + @ Tk, (16)
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+@£l’§,+” Inag — ln(@gf,“]!)) =0

which leads to

D
S = 3l a)
d=1

On the other hand, equation (10) implies that the sum
of realizations of wgy, (belonging to the same experi-
ment) over d = 1,..., D, represents the realization (of
the same experiment) g, of the random variable Gp.
. e k4]
Hence, a corresponding sum over estimations w,, ' of
the realizations wg, can be interpreted as an estimate

§g€+1] of gy, i.e.

AP = gl (18)

Figure 2: Reconstructed image of a cylinder phantom
after 20 iterations (left) and 50 iterations (right)

Obviously, the "best’ estimate Xb of the expected value
Ap of the random variable Gy is the current realization
gp of Gy, if we apply the ML-EM algorithm. This as-
tonishing result gives deep insight into the mechanism
of this algorithm. Obviously, the algorithm is not able
to deliver a reliable estimate of ), but simply tries to
reconstruct the current radioactive activities, which,
due to the stochastic nature of these processes, can be
interpreted as the \y’s superposed by ’noise’. In other
words, the algorithm is not able to reduce statistical
fluctuations by means of averaging over independent
measurements which would be the only possible mech-
anism to improve the SNR (signal to noise ratio) of
the reconstructed image. Experiments with real data
confirm this result, that the reconstructed image is dis-
torted by superposed high frequency noise (cf. Fig. 2,
where reconstructed images (after 20 and 50 iterations)
of a cylinder phantom are depicted). However, the sto-
chastic nature of the radioactive processes is not the
only reason for noisy effects in reconstructed images.

One has to interpret simulation results carefully,
since, additionally, the convergence behaviour of the
algorithm itself amplifies noisy artefacts during a long
time of the iteration cycle. This aspect will be dis-
cussed in the next section.

3. CONVERGENCE BEHAVIOUR

The convergence behaviour of the algorithm is analyzed
by means of artificially constructed projection data.
This is done by projecting an artificially created image
g (which is deterministic) of an ideal disc via matrix a,
i.e. the projections

p = ag (19)
are not distorted by noisy (statistical) effects. In other

words, a good reconstruction algorithm should be able
to determine g on basis of the given projections p. Fig-
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Figure 3: Profile of an artificial disc
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Figure 4: Sum of squared error as a function of the
number of iteration steps

ure 3 shows a profile of this disc.

The euclidean distance f between reconstruction
g and original image g represents the reconstruction
error and served as convergence criterion

f= Z(gb - o). (20)
b=1

In a computer simulation with 19000 iteration steps,
this deviation has been measured. The algorithm con-
verges slowly, but monoton. Figure 4 shows the results
of the first 9500 iteration steps.

In spite of the ideal data used in our experiments,
the well known artefacts occurring during the iteration
procedure had been also observed. These artefacts ap-
pear as superposed noisy texture in the reconstructed
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Figure 5: Magnitude of the difference of spectra be-
tween reconstructed and original profile after 19000 it-
eration steps. Fs=sampling frequency

images, whose granularity seems to become finer dur-
ing the iteration process. Since fine structured noise
is more disturbing for humans, many people associ-
ated with these effects a declining performance of the
ML-EM algorithm after approximately 20 iterations.
This subjective interpretation is definitely incorrect if
we apply the mathematically based quality measure f.
The latter indeed was monotonically decreasing dur-
ing all of our simulations. In order to explain this dis-
crepancy between subjective and objective (mathemat-
ically based) quality judgement one has to investigate
the spectral properties of the reconstruction error. Re-
spective investigations have been performed on basis of
the already described ideal disc image. The magnitude
of the difference between the spectra of reconstructed
and original profile after 19000 iterations is shown in
Figure 5.

The results of our computer simulations can be in-
terpreted as follows. At the beginning of the iteration
process, the reconstruction error signal has a relatively
high energy, which is nearly uniformly distributed over
the whole spatial frequency range (Fig. 6). With pro-
gressing iteration, the total error signal energy declines,
however, it is more and more concentrated in the high
spatial frequency band. In other words, after some it-
erations, the low frequency components of the original
image are nearly perfectly reconstructed whereas the
reconstruction of higher frequency components needs a
large number of iteration steps. In particular, the latter
statement is of special interest. Most people working
with the ML-EM algorithm have observed a ’conver-
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Figure 6: Magnitude of the difference of spectra be-
tween reconstructed and original profile after 20 itera-
tion steps. Fs=sampling frequency

gence’ of the algorithm after approximately 20 itera-
tions [3] resulting in a poor reconstruction. However,
in light of the above discussion, the algorithm is still far
away from its equilibrium point. Thus, improvements
are still achievable. However, due to the extremely slow
convergence of the algorithm with respect to the recon-
struction of high frequency components, many thou-
sands of iteration steps would be needed for signifi-
cantly improving the results, what would be impossi-
ble in practice. In order to verify the last statement we
tested the ML-EM algorithm with an ideal disc image
of lower resolution. Indeed, after a sufficiently long it-
eration time, even the higher frequency components of
the reconstruction error signal had been so small that
they lay below the visual perception level.

In summary, differences between the low frequency
components of reconstructed and original image in the
k-th iteration step lead to a large correction signal. In
contrast to this, the algorithm is very insensitive with
respect to high spatial frequency components of the
error signal.

4. CONCLUSIONS AND REMARKS

The results of the above investigations could be used as
a basis for improvements of the ML-EM algorithm or
the construction of alternative reconstruction methods.
The ML-EM algorithm is an iterative procedure, how-
ever, the statistical properties of the measured data are
not sufficiently taken into account. The convergence
behaviour of the algorithm with respect to high spatial

frequency components of the image is rather poor.

As a consequence, the expectation step of the algo-
rithm should be replaced by an algorithm with better
convergence behaviour. Promising results have been
achieved by using conjugate gradient methods. In gen-
eral, parameter estimation methods always need a large
set of measurements in order to reduce the variance of
the estimator. In our application, however, the num-
ber of unknown independent parameters ), is not sub-
stantially smaller than the number of statistically inde-
pendent measured parameters (projection data). Only
in special cases, where a priori knowledge concerning
the spatial smoothness of the images under reconstruc-
tion is available [2], statistically significant results are
achievable. In other words, there are two possibilities
for constructing better estimators. First, many inde-
pendent measurements of projection data can be used
for achieving a small variance of the estimator. Sec-
ond, the number of independent parameters can be re-
duced by using a priori knowledge, e.g. with respect to
smoothness of the image or prior anatomical informa-
tion from other tomography images [5].
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