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ABSTRACT

Fractal signals have attracted a lot of attention in var-
ious �elds lately, and numerous algorithms have been
designed to analyze them. Most of them investigate
long-term correlations, hence requiring long data sets
(i.e. data sets extending to very large time scales).
This requirement is however rarely met in practice,
which can cast doubts on the reliability of the results.
This work tries to partially �ll this void by analyzing
a method examining long-term correlations for short
time series. It is shown the conclusions obtained for
long data sets remain valid, but there are some par-
ticular cases that should be taken into account before
concluding on the fractality of a signal. A practical
example, namely heart rate recordings, is taken to il-
lustrate some possible pitfalls that can be encountered
when real-world short data sets are to be studied.

1. INTRODUCTION

Fractal signals have attracted a lot of attention in the
recent past, since many real-world signals, in particular
biomedical signals, seem to have this property [1, 2, 3].
Di�erent methods have been developed to assess the
fractal nature of a signal, such as the Hurst exponent [4]
or, more recently, the Allan and Fano factors [5].

These algorithms look for long-range correlations,
and thus take data sets long enough to get rid of the
short-range correlations. Investigation on the behavior
of these algorithms has however not been done exten-
sively for data exhibiting only short-range correlations,
and it is of interest to have a better understanding of
their behavior in this context.

The test that will be studied here is a simpli�ed ver-
sion of Hurst's method. It was proposed by Buldyrev et
al. (see [6] and refs therein) for the analysis of biomed-
ical data, namely DNA sequences, but has proved to
be useful in other �elds of biomedical engineering, such

as heart beat or membrane channel openings record-
ings. The more classical Hurst analysis could also be
used, but the former method basically yields the same
results, and is faster. Its behavior is studied in the
presence of short data sets, and an application to heart
rate signals is presented.

2. ROOT MEAN SQUARE FLUCTUATION

FUNCTION

The mean square uctuation function [7] examines the
correlations across scales, by showing the di�erences
between samples separated by a time lag l with respect
to this lag. If the signal is fractal, its evolution obeys a
power law whose exponent is similar to the Hurst one.

In practice, the procedure consists in �rst comput-
ing the di�erence function d(l)

d(l; n) = x(n+ l)� x(n) (1)

where x(n) is the time series of interest. One then com-
putes the mean-square uctuation function F (l) itself
by

F 2(l) = d2(l; n)� d(l; n)
2

(2)

The horizontal bar stands for the average with respect
to n, so that this averaging yields the mean square
di�erence for a given lag.

In the case of a fractal signal, the mean square uc-
tuation function follows a law of the form

F (l) � Ca� (3)

where a is a given parameter, and � is the exponent
of the power law. In general, it can take one of the
following forms:

(1) F (l) � l�. This type of behavior implies that
there are correlations on all scales, or self-similarity.
� = 0:5 is a critical value: It is characteristic of



Brownian motion, a speci�c scale-invariant pro-
cess that is independent, contrary to classical frac-
tals (see [8], chapter 9, for a thorough explanation
on Brownian motion, fractional Brownian motion
and their di�erence). When � > 0:5, the process
is persistent: An increasing (decreasing) trend in
the past implies an increasing (decreasing) trend
in the future, whatever the time scale. On the
contrary, if � < 0:5, the process is anti-persistent,
i.e. an increasing trend in the past implies a de-
creasing trend in the future.

(2) F (l) � 1 � e�l=R. In this case, there are corre-
lations across scales, but extending only up to a
range R. The asymptotic behavior is thus un-
changed from the purely random case (i.e. white
noise).

(3) When neither of the preceding forms is encoun-
tered, further study is necessary. We will focus
on this case for the remainder of this work, since
the two former cases are already well-known.

These properties can be seen in a straightforward way
on a log-log plot of F (l). If the signal is uncorrelated,
the curve is a straight horizontal line. If the signal has
some sort of self-similarity, one has a straight line with
a slope di�erent from � = 0. If this straight line tends
to saturate, it usually means that there are correlations
only up to a given range.

3. ANALYSIS OF THE ALGORITHM

The problem of the above analysis is that it is valid
only for in�nite time series, on which all scales can be
observed. In practice, the results are the same for �nite
data sets, provided their length is su�cient for a large
number of scales to be observable, i.e. the di�erence
function can be computed up to large lags. Here again,
the problem is that such long time series are often not
available, and it is by no means assured that the theo-
retical results will still be valid in practical situations.

Performing an analytical study of the results for
short data sets is not possible in general. It is thus
necessary to resort to simulations. The algorithm was
thus applied to a wide variety of signals: Synthetic
time series, such as fractional Brownian motion, sim-
ple Brownian motion, white noise, autoregressive (AR)
processes, chaotic signals (among which the R�ossler
system or the logistic map); noise was superimposed on
some of these signals, in order to study the reactions
of the algorithm in what is the most usual real-world
case. All time series were limited to 1000 samples.
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Figure 1: Examples of the behavior of the mean-square
uctuation function for di�erent signals. a) fractional
Brownian motion, b) AR(1) process, c) AR(2) process,
d) random white noise, e) the R�ossler system and f)
the H�enon map. Theses plots cover all the observed
behaviors.

Figure 1 shows the reaction of the mean-square uc-
tuation function to several kinds of signals. The behav-
ior of Fig. 1.a) is well predicted by theory: a straight
line remains indicative of a fractal, whatever the length
of the data. The deviation of the curve close to its end
is not surprising either: for larger lags, the number of
di�erences on which the computation of F (l) can be
done is reduced, which lowers its accuracy.

Figure 1.d) also corresponds to what was expected.
Any signal having a at spectrum indeed exhibits a at
mean-square uctuation function whatever the lag and
the number of points. The increases in the deviations
widths around the trend in Fig. 1.b) and 1.d) also re-
sult from the decreasing number of points available to
compute the average uctuation at larger scales.

Figures 1.b) and 1.c) are less trivial to interpret.
Figure 1.b) is rather similar to Fig. 1.a), except that
the overall shape of the �gure is convex. This behavior
is characteristic of stochastic signals exhibiting some
sort of structure, such as ARMA processes, with the
exclusion of fractals. Fig. 1.c) is essentially similar to
the preceding one, except for the ripples. Experiments
have shown that these ripples are characteristic of peri-
odicities in the signal. In particular, they can be seen in
strictly periodic signals, but also in all AR(n) processes



(provided n > 1), as well as in nonlinear systems.
Figures 1.e) and 1.f) show the results for two chaotic

systems. As expected, none of them exhibit a straight
line. Moreover, the shape of F (l) depends on the par-
ticular process at hand. For instance, the important
ripples that are seen on Fig. 1.e) come from the peri-
odicities of the R�ossler system.
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Figure 2: E�ect of noise on AR(1) process (a, c, e) and
fractional Brownian motion (b, d, f). a) and b) F (l)
for di�erent amounts of noise (1%, 5%, 10%, 15%, 20%,
25%), c) and d) 5% of noise, e) and f) 20% of noise (the
percentages are the percentage of noise in the overall
signal)

When noise is added to a signal, the mean-square
uctuation function is signi�cantly altered. Figure 2
shows the alteration for AR(1) and fractional Brownian
motion results, and sums up all possible behaviors that
can be encountered in practice. It can be inferred from
the theoretical behavior of F (l) that the presence of
noise will tend to atten the curve toward a at line,
which can indeed be observed by comparing Fig. 2.a)
and 1.b).

Figure 2.b) also reveals an unexpected e�ect: the
noise renders F (l) concave. This can however be easily
explained: Because of the stationarity of the signal, the
signal-to-noise ratio tends to be lower for small lags.
This results in a attening of the curve for the smaller
lags l, while for larger lags the behavior is distinctly
a power law. Since the transition between both must
be smooth by de�nition of F (l), these characteristics

can only result in a concave behavior (which is put in
evidence on Fig. 2.f).

A similar reasoning can be applied to the AR pro-
cess and its corresponding F (l) curve. We have seen
above that the higher SNR for small lags results in a
attening of the F (l) curve. Thus, when noise is ap-
plied to the AR(2) process, the superposition of the
noise-free convex curve and the attening e�ect of the
noise will �rst result in a straight line, while, when the
overall level of noise is high enough, F (l) will take a
somewhat concave appearance (Fig. 2.e).
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Figure 3: E�ect of the length of the data on AR(1)
process (a, b, c) and fractional Brownian motion (d,
e, f). a) and d) F (l) for (bottom to top) time series
of 3000, 2000, 1500, 1000 and 500 samples. b) and e)
show F (l) for 1500 samples, c) and f) for 500 samples.

The e�ects of the length of the recording on F (l)
are by no means surprising. It has already been men-
tioned that the accuracy of the computation for a given
lag depends on the number of points in the time se-
ries. It is indeed obvious that, if the lag between sam-
ples is of only some points, the averaging performed in
eq.( 2) will be much closer to the expected value than
the average made for a lag close to half the duration
of the recording. A decreased number of samples in
the recording will thus decrease the amount of lags for
which the computation of F (l) will be accurate, hence
the size of the usable part of the log[F (l)] vs l curve.



The displacement of the curve origin that can be seen
on Fig. 3.b) is purely random, and comes from the fact
that a new realization of the fractional Brownian mo-
tion process has been used for each simulation.

Computing the exponent of the process is not a dif-
�cult task, but it will not be done, since the result is
not accurate. It is indeed di�cult to automatically se-
lect the suitable part of the curve. Besides, given the
limited amount of data that is available, the numerical
result will be unreliable.

In most practical cases, all that is available from
a system is the observation of a time series, for which
the amount of noise in unknown. The observation time,
hence the amount of data, is limited, and little is known
about the system itself. It can then be of help to sum-
marize the results obtained so far according to the qual-
itative behavior of the F (l) curve. The di�erent results
can be:

� A straight line of non-nil slope: In this case,
the process under study is likely to be a pure
fractal, and a fractal analysis can be conducted
in order to characterize it. It is however possible
that the underlying process is a random process
with a non-at spectrum, with some noise super-
imposed on it.

� A straight line of slope � = 0: The process
under study is a wide-band process. All that can
be said is that it is not a fractal one, and that
there are no periodicities in it. Nothing can be
said about the amount of noise in the signal, and
the available amount of data will have no inu-
ence on this fact.

� A convex curve: In this case, further studies
must be conducted in order to determine the type
of process one is dealing with. It can also be the
result of the analysis of a fractal signal with a
very limited amount of data (typically less than
what is necessary to cover at least one period of
the signal).

� A curve with ripples: The ripples are always
indicative of some kind of periodicities in the sig-
nal. It is to be noted that they can have various
origins: On Fig. 1.c), they come from a stochastic
process, while on Fig. 1.e), their origin is to be
found in a deterministic process.

� A concave curve: This always indicates the
presence of noise in the signal. This shape can
either be the result of a fractal process with noise
superimposed on it, or of a non white process that
is severely plagued with noise.

With this in mind, it is now possible to apply the
mean square uctuation function to real world data,
namely heart-rate recordings.

4. APPLICATION ON HEART RATE

The mean square uctuation function was applied to
two groups of patients, control subjects, su�ering from
no known disease, and patients having recently under-
gone a heart transplant. Typical results are given on
Fig. 4.
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Figure 4: Typical mean square uctuation function for
a) control subjects, b) heart transplant patients

Figure 4.a) indicates that the normal heart rate is
not fractal, and that some sort of periodicity is present
in the signal. The latter can be readily explained, since
respiration modulates the heart rate in a regular fash-
ion. Interesting to note is the fact that this periodic
feature even more readily visible in the mean square
uctuation function than it is in the corresponding fre-
quency periodogram:
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Figure 5: Periodogram of the heart rate recording of
a control subject. The respiration peak is located be-
tween 0.1 and 0.15 beats�1

The assessment of fractality is more complicated to
settle. The heart transplant results are indicative of
a fractal component plagued with noise (compare with
Fig. 2.f). However, Fig. 4.b) does not give any evidence
of fractality in normal human heart beat. This seems
at �rst sight in contradiction with the results found



in many articles, such as [9, 1]. This may however be
explained: In the present work, only short-term corre-
lations are taken into account, while the other papers
examine the correlations exclusively on middle to long
time scales. It is very likely that there exist short-term
correlations that hide the long-range structure of the
healthy heart rate.

These indications of fractality or no fractality are
however not safe-proof. The last section has shown
that several signals could be at the origin of the ob-
tained plots. In the case of heart transplant record-
ings, two types of signals can match the results: either
a fractional Brownian motion of some sort, on which
noise is added, or an AR(1) process with a low signal-
to-noise ratio. The normal heart rate, on the other
hand, could be modeled either by an AR(1) process,
a stochastic process of white spectrum, or fractional
Brownian motion with some noise added. In all cases,
an AR(2) process should be added in order to model
the inuence of the respiration on heart rate.

All hypotheses were tested, the accuracy of the mod-
eling being assessed by the mean absolute error be-
tween the F (l), the time series and the power spectral
density of the model and the signal. The best mod-
els found for heart transplant patients are fractional
Brownian motions of exponent � = 2:0, together with
an AR(2) process taking the respiration into account,
and some background noise. The control subjects, on
the other hand, are best modeled with an AR(1) pro-
cess, on which an AR(2) process and some noise are
added, for the same reasons as before.

It can thus be concluded that an isolated heart
rate (the transplanted heart is not linked with the cen-
tral nervous system) seems to be fractal, while the
healthy heart is not, or at least that the latter ex-
hibit short-range correlations that are strong enough
to overshadow a possible long-range structure.

5. CONCLUSION

This paper addressed the behavior of a method inves-
tigating long-range correlations for short data sets, in-
cluding the e�ect of observation noise. It has been
shown that, if some properties are identical to the ones
predicted by theory, some strange unpredicted behav-
iors can appear, such as concave of convex curves. Each
case is analyzed, and it is shown that a convex curve is
indicative of a non-fractal non-periodic system, while
concave curves are indicative of a fractal process con-
taminated with noise. Ripples may appear in any con-
�guration, and are in every case indicative of the pres-
ence of some kind of periodicities in the signal.

This method has also been applied to real-world sig-

nals, in this case heart rate data. The results show that
some evidence of fractality is visible, but this remains
to be con�rmed. It has indeed be seen that no �nal
conclusion could be drawn directly from the F (l) plots,
since similar plots can have di�erent origins. While be-
ing of much use to test if a signal could have fractal
properties, it is not su�cient to assess the nature of a
signal, at least in the case of short data sets. Further
inquiries, such as hypothesis testing or modeling need
to be performed in order to reach reliable conclusions.
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