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1. ABSTRACT

Despite considerable appeal in the statistics literature, the
Huber estimate is little used in engineering. We believe this
is due primarily to two factors: difficulty computing the es-
timate and the need for a corresponding scale estimate. We
present a variation of the Huber estimate which we call the
“trimmed-Huber” estimate that addresses both of these con-
cerns. A fixed fraction of the data points will be “trimmed
off”, but unlike the trimmed mean, these data points do not
have to by symmetrically trimmed.

2. INTRODUCTION

The use of robust statistics to combat non-Gaussian (gen-
erally heavy tailed) noises has a long history, dating back
thousands of years. Starting in earnest in the 1960’s and
70’s, considerable scientific study of robust estimators was
completed. Two excellent volumes were written summariz-
ing this work, one by Huber [5] and one by Hampel [3].

Briefly, three classes of robust estimators were consid-
ered: L, M, and R estimates. The “L” estimates are those
derived from linear combinations of order statistics. “M”
estimates are generalizations of maximum likelihood esti-
mates in that they minimize a loss function. Finally, the
“R” estimates are based on rank tests. Since R-estimates
are not germane to the rest of this paper, they will be ig-
nored hereon.

The engineering community is interested in robust esti-
mates for two reasons: Firstly, in many applications, heavy
tailed noise is present. For example, transmission errors
often introduce “salt and pepper” noise—black and white
dots—into images. Generally speaking, salt and pepper noise
is easily filtered out with simple nonlinear filters, e.g., [4].

The first estimators considered in the engineering liter-
ature to eliminate these noises were the median filters [2].
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The median can output a finite value as long as less than half
the data points are finite.

Over the years numerous generalizations of the median
have been proposed. These include recursive medians, lin-
ear combinations of order statistics and its simpler variant,
the trimmed mean, Ll-filters, LUM filters, permutation fil-
ters, morphological filters, stack filters, and others.

Secondly, the engineering community has considered
robust statistics because the signals in many applications
are non-Gaussian in nature. Nowhere is this more appar-
ent than in image processing. Edges and other features are
not well modeled by Gaussian statistics. Here, again, the
median filter offers advantages. It can pass a simple edge
without distortion.

From the statistics point of view, all or almost all these
filters are L-estimates (or are based on L-estimates). Statis-
ticians are more likely to consider M-estimates for their ro-
bust procedures. One reason for this is that M-estimates
generalize more easily to multivariate situations. A likely
second reason is that statisticians are less concerned with
issues of computational time required and implementations;
engineers often want to be able to filter images in “real
time.”

Interestingly, the image filtering problem is usually im-
plemented in a sliding window fashion, with each instance
of the filter producing one estimate of one pixel. In this
manner, each estimation is scalar. However, the whole prob-
lem is multivariate, not scalar.

3. M-ESTIMATES

M-estimates are the result of minimizing a loss function.
For the simple location problem in independent and identi-
cally distributed noise (iid), the estimate becomes

x̂ = argmin

nX
i=1

�(xi � x̂) (1)



After taking a derivative with respect tôx, one obtains “nor-
mal equations”:

0 =

nX
i=1

	(xi � x̂) (2)

where	(r) = d�(r)=dr.
For the least squares estimate,�(r) = r2=2 and	(r) =

r; for the least absolute residuals estimate,�(r) = jrj and
	(r) = sign(r).

Huber introduced the concept of “least favorable” dis-
tributions and the corresponding minimax loss function:

x̂H = argmin

nX
i=1

�H(xi � x̂H) (3)

or, equivalently,

0 =

nX
i=1

	H(xi � x̂H) (4)

where

�H(r) =

�
r2=2 jrj � k

kjrj � k2=2 jrj � k
(5)

and
	H(r) = max(min(k; r);�k) (6)

The Huber location estimate has a number of desirable
properties:

� As k ! +1, the estimate reduces to the sample
mean; ask ! 0, the estimate reduces to the sam-
ple median. Thus,k can be considered as a robust
tuning parameter. Smallk’s yield robust estimates,
while largek’s result in greater averaging.

� Heuristically at least, the Huber loss function makes
sense. Small errors, those most likely to be Gaus-
sian in origin, are weighted quadratically; large er-
rors, those more likely to be outliers, are given less
weight than ordinary squared error does.

� The Huber loss function is convex. Other, more ro-
bust, loss functions are not. Convexity implies that
the estimate can be computed by procedures that search
for local optima.

The Huber estimate is not without criticism:

� In some situations, more robustness is needed. The
loss function should increase less rapidly thanjrj, or
even decrease. Note, these loss functions are non-
convex which makes computation problematic.

� Generally, there is little guidance in how to choosek,
especially in time-varying situations (which make it
difficult to measure a local estimate of scale).

� Too much computation may be required, even though
the loss function is convex.

In the next section, we address the computation and scale
issues and propose solutions.

4. THE TRIMMED-HUBER FILTER

We suggest choosingk so that a fixed fraction of the data
points are “trimmed off”. We call this estimate the “trimmed-
Huber” estimate (orfilter, depending on the application).
The trimmed-Huber estimate is similar to the trimmed mean,
but with one very important difference: the points can be
trimmed off asymmetrically. Exactly which points get trimmed
off are determined by the data. Below we illustrate a rela-
tively simple algorithm that computes the trimmed-Huber
estimate. This algorithm was originally presented in [1] in
the context of multivariate robust regression.

The idea behind the algorithm is to considerk as a pa-
rameter that can be changed or adjusted. Initially,k = +1

and the Huber estimate coincides with the sample mean,
which is trivial to compute. Thenk is reduced and the opti-
mal estimate is continually adjusted until the desired num-
ber of data points are trimmed off. Note, ifk ! +0, then
the Huber estimate reduces to the sample median.

For the moment, considerk fixed, and let̂xH(k) denote
the optimal Huber estimate as a function ofk. Define the
following three sets,A = fi : xi� x̂H(k) � �kg,B = fi :

�k � xi � x̂H (k) � kg, andC = fi : k � xi � x̂H(k)g.
If some point, sayj, hasxj� x̂H(k) = �k then we say that
point is at acorner. It can be arbitrarily assigned to either
of the two possible sets.

The normal equations reduce to

0 =
X
i2A

(�k) +
X
i2B

(xi � x̂H(k)) +
X
i2C

k (7)

Letting nA equal the number of elements inA, nB in B,
andnC in C, we can easily solve for̂xH(k)

x̂H(k) =

P
i2B xi

nB
+ k

nC � nA

nB
(8)

= x̂B + k
nC � nA

nB
(9)

wherex̂B is the least squares estimate (sample mean) based
only on those points inB. If the partition yields a consistent
x̂H (k), then we say the partition isvalid.

As a comment, this suggests a conceptually simple al-
gorithm for computinĝxH (k): guess a partition, compute
x̂H (k), and check to see if the partition is valid. If so, then
we are done; if not, guess a new one and repeat. While this
may be acceptable in some situations, without guidance as
to how the guessing should be done, the number of parti-
tions checked may be unacceptably large. We will not con-
sider this approach any further in this paper.



The initial valid partition isnA = 0, nB = n, nC = 0,
andk = +1, corresponding to the sample mean. Now
assume that we have a valid partition for somek > 0. Com-
putex̂H(k) as above. Now reducek until some point is at
a corner. Move it from set B to set A or C (whichever is
appropriate).

Assume the point is moving from set B to set A. Then,

�k � xi � x̂B � k
nC � nA

nB
(10)

Simple rearrangement yields

k �
x̂B � xi

1�
nC�nA
nB

(11)

Similarly, if the point is moving from B to C,

k �
xi � x̂B

1 + nC�nA
nB

(12)

The new partition is valid for a new range of k.
It is straightforward to show thatjnC�nA

nB
j � 1. This

guarantees that the directions of the inequalities above are
correct and also that no point ever moves fromA to B or
fromC toB.

The only candidates to move out ofB an any step are
the smallest (toA) and the largest (toC). If the data is
presorted, then only these two points need to be checked and
the overall complexity will beO(n) (except for the sorting
which will requireO(n log n) in general.)

Thus the algorithm is as follows:

1. Presort the data. SetnB = n, nA = 0, andnC = 0

and computêxB =
Pn

i=1 xi andk = max jxi� x̂B j.

2. Do until finished,

(a) Check the smallest and largest elements inB to
see which leaves.

(b) Move that point out ofB. DecrementnB , and
incrementnA or nC .

(c) Compute the new estimate.

3. ComputêxH(k) = x̂B + k(nC � nA)=nB.

Each time through the loop requiresO(1) operations
and there are at mostn � 1 times through the loop. Thus,
on presorted data,O(n) operations are required.

The trimmed-Huber estimate has the following advan-
tages:

� The amount of computation needed to compute the
estimate is completely predictable.

� When the samples are trimmed off symmetrically (so
thatnA = nC), the estimate coincides with the trimmed
mean.

Step nA nB nC x̂B k x̂H(k)

0 0 6 0 63/6 129/6 63/6
1 0 5 1 31/5 49/6 235/30
2 0 4 2 15/4 11/2 26/4
3 1 3 2 14/3 4 6
4 2 2 2 6 2 6

� The estimate can trim off the data points asymmet-
rically. This is entirely reasonable, especially in the
usual image processing situation of a fairly small slid-
ing window.

An edge region will contain points that are dissimilar
from one another. The Huber estimate can trim off those
points asymmetrically. Consider a one-dimensional signal
with a perfect edge. Let the firstl points be 0 and the next
n � l be 1. Then as long as the number of points being
trimmed off is at leastn=2, the trimmed-Huber estimate will
pass this edge perfectly. The only trimmed mean that can
pass the edge perfectly is the limiting case of the median.

5. NUMERICAL RESULTS

As an example of how the computations go, consider the
following (contrived) data set:X = f1; 2; 4; 8; 16; 32g. There
are 6 data points. The results of computing the median are
listed in the table below. (We are not suggesting that this
is an efficient algorithm for computing the median, merely
that the median is the end result if the computation is pur-
sued that far.)

This example illustrates some interesting points. Note
that the first two samples trimmed off are both on the same
side. As the estimates approach the median,nA � nC .
(Recall,jnC�nAj � nB .) Also, the contrived nature of the
data results in a one-directional convergence to the median;
this is not true in general.

We also consider present the results of a simple im-
age filtering experiment. Two images, lena and aerial, both
512 � 512 with 8 bits per pixel, were filtered both with
and without Gaussian noise by four sliding window filters:
the mean, median, trimmed mean, and trimmed-Huber. In
all cases, the window was3 � 3. The trimmed mean and
trimmed Huber both trimmed off 4 of the 9 points. Lena is
typical of a fairly smooth image; aerial is a more detailed
image.

From the tables, we can see several things: The trimmed-
Huber estimate generally performs best, especially when
the noise is small or the image has sharp features. (Not
shown here, but the trimmed-Huber estimate produces the
best looking images.) The mean generally does the worst.1

1A fact which should surprise no one at this meeting!



� = 0 � = 5 � = 20

RMSE MAE RMSE MAE RMSE MAE
Mean 5.26 3.27 5.23 3.63 8.52 11.12
Trim Mean 4.50 2.81 4.94 3.35 8.75 6.81
Trim-Huber 4.35 2.67 4.84 3.30 8.89 6.93
Median 4.25 2.25 4.93 3.37 9.65 7.54

Table 1: Measured RMSE and MAE for the Lena image filtered by four different filters.

� = 0 � = 5 � = 20

RMSE MAE RMSE MAE RMSE MAE
Mean 11.12 6.75 11.25 7.02 12.98 9.23
Trim Mean 9.73 5.49 9.99 6.03 12.60 9.08
Trim-Huber 9.43 5.10 9.73 5.78 12.64 9.12
Median 9.54 4.51 9.91 5.69 13.36 9.71

Table 2: Measured RMSE and MAE for the Aerial image filtered by four different filters.

6. CONCLUSIONS

This paper is merely a beginning at exploring the trimmed-
Huber estimator. Future work will consider down-weighting
samples further from the center and the search for optimal
trimming fractions. Nevertheless, we believe the results pre-
sented here are encouraging: The trimmed-Huber estimator
combines much of the averaging capability of the mean and
the edge passing ability of the median. It will outperform
the corresponding trimmed mean in salt and pepper noise
since it can trim off points asymmetrically.

The trimmed Huber estimate can be extended to more
general multivariate situations and can (relatively easily) ac-
cept equality and inequality constraints.

7. DISCLAIMER

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government.
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