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1. INTRODUCTION

2. PRELIMINARY RESULTS

REVISITING THE ESTIMATION OF THE MEAN USING ORDER STATISTICS
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We study in this paper the estimation of the mean using

the order statistics of a sample of random variables.

This kind of estimation has been done by Bovik for

independent identically distributed variables. In this

paper we extend this work to correlated variables. In

particularly we extend this kind of estimator to a new

estimator using simultaneously the variables and their

order statistics. We show that this new estimator per-

forms better than the previous one by �learning� the

correlation and the probability density function of the

variables, without an knowledge. At last an

adaptive algorithm is given and a practical application

is presented.

Signal processing often needs to estimate the expected

value of a �nite length sequence of random variables

. Generally, this estimation is performed with a

sample mean. It is well known that such an estimator

is the best one (in the sense of the mean squared error

(MSE)) when the data are Gaussian and independent

identically distributed (iid). But this property is no

longer valid if the previous assumptions are not sat-

is�ed. As an example, for a uniform iid sample, the

maximum likelihood estimator of the mean makes use

of two order statistics [5]: Min Max .

Bovik developed a linear combination of order statis-

tics (OS) to estimate expected values without an

knowledge, contrary to the maximum likelihood

method [2]. He only worked with iid noise and showed

that the best OS unbiased estimator (BOSUE) per-

formed better than the sample mean (in the sense of

the least MSE).

In this paper, Bovik's work is extended to the case of

colored noise, by mixing OS and usual linear estimator,

taking into account the noise correlation.

Given a sequence of random variables , OS

are de�ned by arranging these values

. is called the th OS of the sam-

ple. This nonlinear process complicates considerably

the analysis, but a lot of results can be found in David

[1]. Let be the expected value of the sample, it can

be written , where is a zero-mean vari-

able. Hence, it can also be written .

The following notations will be used

sample vector (resp. )

vector of the OS (resp. )

correlation matrix of

covariance matrix of

constant vector

coe�cients vector of the

estimator

Assume now that the are iid. Assuming that the

probability density function of the variables is

even, David [1], Bovik [2] and Pitas [3] have built the

best OS unbiased estimator (BOSUE) of the constant

as follows

the estimator is linear to the OS:

the estimator is unbiased: , i.e.

the estimator is of least MSE: is

minimum

Under the assumption of symmetry of , , which

is not null, veri�es [1, 4]. The

estimator is then considered to be symmetric, i.e.

, but this symmetry has to be veri�ed

. As a consequence, the unbiasness condition

holds

(1)

Minimizing the MSE under condition (1), i.e. min-

imizing , and setting the La-

grange multiplier to verify the constraint, David [1]
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and Bovik [2] have evaluated the BOSUE as

(2)

David has shown that the entries of verify

. As a consequence, the symmetry

of can easily be veri�ed. Notice that the mean

squared error is given by . For

a Gaussian sample, Bovik showed that is the

average of the variables , while for a uniform sample

the estimator is equal to Min Max , which are

the maximum likelihood estimator in these cases [5].

Similarly, given a �nite number of random values

, the best linear unbiased estimator (BLUE) is de-

�ned by

(3)

Then, the mean squared error is given by

. If the variables are iid, is proportional to

the identity matrix and then, whatever their probabil-

ity density, the BLUE is the average of the sample, so

that the minimum of the MSE is reached only if the

are Gaussian. Finally, when the data are independent,

the BOSUE performs always at least as well as the

BLUE because the BLUE is, in this case, a particular

OS estimator. The question we want to answer in this

paper is: what happens if data are not independent?

Figure 1 shows two examples for colored noise, Gaus-

sian or uniform [6], to compare BOSUE and BLUE.

Notice that the results have been estimated by aver-

aging the matrix used (e.g. ) on a points

simulated signal ( realizations of ). It can be seen

that BOSUE is no more better than BLUE when the

data are correlated. So, we propose to combine both

estimators, hoping that the linear part can learn the

correlation of the data, while the nonlinear one learns

the probability density!

We now consider vector . Let (respec-

tively ) be the linear part (respectively the OS part)

of the estimator: . The joint probability

density function of the zero-mean sample is assumed

to be even .

First we will insist that the estimator be unbiased, that

is . It leads to the condition

. It can be shown, under the assumption

of symmetry of that is also antisymmetric

( ). Also considering that

Figure 1: BOSUE and BLUE for colored Gaussian and

uniform noises ( ).

is symmetric, the unbiasness constraint can always be

written as . Minimizing the MSE of the esti-

mator under the previous constraint leads to

(4)

where is the Lagrange multiplier. Unfortunately,

the autocorrelation matrix in the left hand side is sin-

gular. Indeed, . As a consequence

is in the kernel of .

It can be shown that its rank is , hence vector

, which is orthogonal to , is in the range of this ma-

trix, so that there are vectors satisfying equation (4).

The proposed solution is to remove the �rst component

of to obtain a unique vector, whose dimension is

(5)

where

and where the Lagrange multiplier has been adjusted

to satisfy the constraint. As in the previous section, we

verify that is symmetric. The associ-

ated mean squared error is then .

Notice that any can be cancelled instead of , but

we have chosen to not suppress an OS to conserve the

symmetry of this part.
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4. APPLICATION TO A PRACTICAL

PROBLEM
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Figure 2 shows the two same examples as the Fig-

ure 1 for colored noise, Gaussian or uniform, to com-

pare BLOSUE , BOSUE and BLUE. For the colored

Figure 2: OS and linear parts of the BLOSUE

for colored noises. Gaussian case,

; uniform case,

. The dotted line recalls that the �rst vari-

able has been cancelled.

Gaussian case, the BLOSUE chooses clearly the mean

estimation through the variables, and for the colored

uniform case, the estimation through the OS is chosen.

Notice that the OS part of the BLOSUE for the col-

ored Gaussian noise is not null but constant, due to

the cancelation of . Figure 3 depicts the BLUE, the

BOSUE and the BLOSUE for colored Gaussian noise

�ltered nonlinearly as follows

if

if

if

(6)

As expected, BLOSUE is seen to be always the best

one.

In all the previous simulations, matrices , and

have been estimated by averaging. Practically these

matrices are not known and hence have been estimated

by this method.

In most cases, matrices , or of the data are not

known and must be approximated, using an adaptive

scheme, like a RLS method, for example [3]. Consider

to be a signal. Let denotes (resp. ,

Figure 3: BLUE, BOSUE and BLOSUE for the non-

linear �ltered colored Gaussian noise.

and .

resp. ), and let denotes

the last data (resp. , resp. ).

Let be an estimation of at step . is then esti-

mated using an average scheme (through the woodbury

decomposition), which leads to the following recursive

algorithm

Initialization step: and

From step to step :

Now let suppose that we have to estimate a time-

varying mean, constant by step, corrupted by addition

of zero-mean noise. As an example, we consider the

case of a binary signal, which is constant only for �nite

durations. The three estimators BLUE, BOSUE and

BLOSUE have been applied to such signals. Results

are depicted on Figure 4 for iid uniform noise, and 6

for colored Gaussian noise. Finally, Figures 5 and 7

show the coe�cients of those estimators and the evo-

lutions of two of them. In these simulations we have

�guessed� the transitive times of the algorithm seeing

the evolutions of the two shown coe�cients, hence only
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Figure 4: (A), binary signal; The signal is then cor-

rupted by iid uniform noise (B) ; (C), estimation with

the BLUE; (D) estimation with the BOSUE; (E) esti-

mation with the BLOSUE.

Figure 5: Uniform iid case: (A) and (B) represent the

evolutions of and ; (C) and (D) depict

the BLUE and the BOSUE at the last step; (E) depicts

the BLOSUE at the last step (linear part (left) and OS

part (right) separated; a dotted line recalls that the

�rst variable has been cancelled).

Figure 6: (A), binary signal; The signal is then cor-

rupted by colored Gaussian noise (B) ; (C), estimation

with the BLUE; (D) estimation with the BOSUE; (E)

estimation with the BLOSUE.

Figure 7: Colored Gaussian case: (A) and (B) represent

the evolutions of and ; (C) and (D) depict

the BLUE and the BOSUE at the last step; (E) depicts

the BLOSUE at the last step (linear part (left) and OS

part (right) separated; a dotted line recalls that the

�rst variable has been cancelled).
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the steady state of our algorithm is presented. It can

be seen that when the noise is iid uniform, BLOSUE

clearly chooses the OS estimator, which is the best one

for iid noise. In return, when the noise is colored Gaus-

sian noise, BLOSUE chooses the non-ordered variables:

in this case, the BLUE is the best estimator.

BLUE and BOSUE can easily be mixed to produce

BLOSUE. This one is always the best, because it is able

to learn the correlation (through its linear part) and the

probability density (through its nonlinear part) of the

data. A simple solution has been established to remove

the singularity of the problem. An adaptive algorithm

is then proposed which is, in fact, able to learn the

characteristics of the data. Finally, the method is seen

to be attractive on an usual example.
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