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ABSTRACT

A nonlinear statistical speech production model based
on AM-FM modulation and signal processing methods
to extract the component signals are described. Pre-
liminary ideas on using these signals to compute fea-
tures for a Hidden Markov Model speech recognizer are
presented.

1. INTRODUCTION

In this paper we describe a nonlinear speech produc-
tion model, signal processing tools for the extraction
of the information bearing subsignals from the speech
signal, and preliminary ideas for the use of these sub-
signals to compute features for a Hidden Markov Model
speech recognizer. The basic idea is that the measured
signal is modeled as a superposition of subsignals and
each subsignal is a jointly amplitude- and frequency-
modulated signal. Therefore, in continuous time, the
measured signal s(t) is represented as

s(t) =

IX
i=1

ai(t) cos

�
2�

Z t

�1

fi(� )d�

�
(1)

where ai(t) is the ith amplitude message and fi(t) is
the ith frequency message. The goal of the signal pro-
cessing is to extract ai(t) and fi(t) (i = 1; : : : ; I) from
the measured signal.

The problem as stated is not well posed because
the choice fi(t) = 0 for i = 1; : : : ; I, ai(t) = 0 for
i = 2; : : : ; I, and a1(t) = s(t) provides an exact rep-
resentation of s(t). Therefore, we need to introduce
additional information about the ai(t) and fi(t).

The natural goal of this approach is to represent a
broad band signal s(t) in terms of narrow band signals
ai(t) and fi(t). Even if s(t) does not have a sharply
peaked spectrum, this type of representation is promis-
ing because the nonlinearity will cause bandwidth ex-
pansion exactly as occurs in traditional frequency mod-
ulation.

The approach we pursue to extracting ai(t) and
fi(t) from the data [1] is to introduce statistical mod-
els for ai(t) and fi(t). In addition, corresponding to
the approximation problem, we hypothesize that the
measured data is s(t) + v(t) where v(t) is a noise with
known statistical properties. Then, under appropriate
assumptions, the goal of reconstructing ai(t) and fi(t)
from s(t) + v(t) can be posed as a Bayesian estima-
tion problem and solved using nonlinear �ltering ideas.
We call this statistical nonlinear �ltering approach the
Model-Based Demodulation Algorithm (MBDA).

2. NOTATION

Expectation is denoted by \E". If x is a random se-
quence thenmx(k)

:
= E[x(k)],Rx(k1; k2)

:
= E[x(k1)x(k2)],

and Px(k1; k2)
:
= E[(x(k1)�mx(k1))(x(k2)�mx(k2))].

Independent and identically distributed is abbreviated
by i.i.d. The Gaussian probability density function
(pdf) with mean m and covariance � is denoted by
N (m;�). The notation \x � p" means that the ran-
dom variable (RV) x is distributed according to the
pdf p. Transpose is denoted T . The Kronecker delta
function is denoted by �k1;k2 .

3. THE MODEL AND SPEECH

There has been extensive recent interest in taking a
speech signal s(t) and extracting amplitude a(t) and
phase �(t) modulations, i.e., y(t) = a(t) cos(�(t)), us-
ing Teager's energy operator [2, 3, 4, 5, 6, 7, 8, 9].
Both the case of a linear superposition of terms [6], i.e.,
y(t) =

P
i ai(t) cos(�i(t)), and a single term observed

in the presence of noise [2] have been investigated. In
both cases, the signal is �rst passed through a bank
of �lters and then the energy operator is applied to
the output of each �lter. In the case of a superpo-
sition of terms, the bandwidth of the ith �lter is de-
termined by the bandwidth of the term ai(t) cos(�i(t))
and the outputs of the ith energy operator are ai(t) and



�i(t). Therefore, each �lter is responsible for a particu-
lar term. In the case of a single term in the presence of
noise, the bandwidths of the �lters are determined by
the trade-o� between suppressing the noise and pass-
ing as much signal energy as possible and the single
signal is tracked (by an energy measure) as it moves
from �lter to �lter.

As described in Section 1, in the MBDA approach
we simultaneously consider a linear superposition of
terms and the presence of noise. In a qualitative sense,
the nonlinear �lter acts as a bank of bandpass �lters
where the center frequency of the ith �lter tracks the
instantaneous frequency of the ai(t) cos(�i(t)) term and
the bandwidth of the ith �lter is set to achieve the op-
timal trade-o� between passing signal energy and re-
jecting noise based on the statistical model. In this
point of view, the parameters of the energy operator
approach, speci�cally the bandwidth and center fre-
quencies of the Gabor �lters, are seen to qualitatively
correspond to the parameters in the statistical model
of MBDA.

In speech, a discrete-time version of the model of
Section 1 is more natural and the frequency fi is split
into two parts: a slowly-varying center frequency de-
noted by fi(k) (the formant frequency with variation
on time-scales greater than the pitch period) and a
rapidly-varyingmessage frequency denoted by �i(k) (the
instantaneous frequency with variation on time-scales
shorter than the pitch period). In addition, for each
term in the linear superposition of subsignals, there is
an instantaneous amplitude signal, denoted by ai(k),
and a total phase signal, denoted by �i(k). If de-
tailed statistical knowledge concerning ai(k), fi(k), and
�i(k) is available, then it can be incorporated into the
mathematical model. However, in the speech appli-
cation, only rather imprecise information about power
and bandwidth is available. Therefore, we have chosen
simple dynamics: The instantaneous amplitude and in-
stantaneous frequency signals ai and �i are modeled as
�rst-order autoregressive (AR) processes which allows
independent control of the power and the bandwidth.
The formant frequency fi is modeled as a random walk.
This choice was made because we expect the formant
frequency to remain constant over periods of millisec-
onds in duration and a random walk is the only Gauss-
Markov model in which such behavior has a large prob-
ability of occurring. The dynamics of the total phase
signal �(k) are completely determined by its de�nition:

�i(k) = �i(0) + 2�T
Pk�1

l=0 (fi(l) + �i(l)) where T is
the sampling interval. The measured signal, denoted
by y(k), is the linear superposition of the contribution
from each formant, speci�cally, ai(k) cos(�i(k)), plus
additive measurement noise. The complete model is

therefore

ai(k + 1) = �ai
ai(k) + qai

wai
(k) (2)

�i(k + 1) = ��i�i(k) + q�iw�i(k) (3)

fi(k + 1) = fi(k) + qfiwfi(k) (4)

�i(k + 1) = �i(k) + 2�Tfi(k) + 2�T�i(k) (5)

y(k) =

IX
i=1

ai(k) cos(�i(k)) + rv(k) (6)

where the process noises wai
, w�i , and wfi and the ob-

servation noise v are all iid N (0; 1) sequences; the ini-
tial conditions are ai(0) � N (0; q2ai

=(1� �2ai
)), �i(0) �

N (0; q2�i=(1��
2
�i
)), fi(0) � N (mfi;0; p

2
fi;0

), and �i(0) �

N (0; p2�i;0
); and the process noises, observation noise,

and initial conditions are all independent. Notice that
the initial conditions require that j�ai

j < 1 and j��ij <
1 (since otherwise the stated variances are negative)
in which case ai and �i are wide sense stationary ran-
dom sequences. For later convenience, de�ne � = (�ai

;

qai
; ��i; q�i; qfi ; r; mfi;0; pfi;0; p�i;0). We estimate

the parameter vector � by matching the second order
statistics of the model to training data.

There are several generalizations of the model spec-
i�ed by Eqs. 2{6 that are of interest. The models for
ai(k) and �i(k) in Eqs. 2{6 are �rst order models and
therefore have broad spectra that only rollo� gradually.
However, one objective of AM-FM models is to model
a relatively broad-band signal by nonlinearly combin-
ing quite narrow-band signals. Therefore, narrow-band
models, speci�cally, models with more narrow-band be-
havior than �rst order models, are of interest. One
choice that includes such narrow-bandmodels is ARMA
models, e.g.,

Pp

j=0 �ai
(j)ai(k�j) =

Pq

j=0 �ai
(j)wai

(k�
j) (�ai

(0) = 1). These models can easily be �t into the
state-space framework of Eqs. 2{6: Assuming q < p,
de�ne bi(k) 2 Rp,

g = [1; 0; : : : ; 0]T 2 Rp;

�ai
= [�ai

(0); : : : ; �ai
(q); 0; : : : ; 0]T 2 Rp;

Aai
=

2
6664
��ai

(1) ��ai
(2) : : : ��ai

(p)
1 0 : : : 0
...

...
...

0 0 : : : 0

3
7775 ;

replace Eq. 2 by bi(k + 1) = Aai
bi(k) + gwai

(k); and

replace Eq. 6 by y(k) =
PI

i=1 �
T
ai
bi(k) cos(�i(k)) +

rv(k).
A second generalization to model slow variation of

a signal is to use piecewise constant or piecewise lin-
ear models. This can also be incorporated into the
state-space framework of Eqs. 2{6. A piecewise con-
stant model would replace Eq. 4 by fi(k+1) = fi(k)+



qfiwfi(k)�kmodN;0 while a piecewise linear model would
replace Eq. 4 by the two equations

f+i (k + 1) = f+i (k) + qfiwfi(k)�kmodN;0

f�i (k + 1) = f�i (k) + [f+i (k) � f�i (k)]�kmodN;0

and replace Eq. 5 by �i(k+1) = �i(k)+2�Tf[f+i (k)�
f�i (k)](k mod N )=N + f�i (k)g + 2�T�i(k). In both
cases N is the distance over which fi is constant or lin-
ear and might, for instance, equal the frame duration of
the recognizer. These models are time varying but that
does not introduce substantial additional computation
in the nonlinear �lters of Section 4.

A third modi�cation,motivated by sinusoidal speech
models [10], is to replace the time-varying formant fre-
quencies by a larger number of �xed frequencies. This
can also be incorporated into the state-space frame-
work of Eqs. 2{6: delete Eq. 4, replace Eq. 5 by �i(k+
1) = �i(k) + 2�T�i(k), and replace Eq. 6 by y(k) =PI

i=1 ai(k) cos(2�Tfik + �i(k)) + rv(k) where fi are
the �xed frequencies which might be chosen according
to fi = f1 + i� for constants f1 and �.

4. NONLINEAR FILTERS

If ai(k) was constant then Eqs. 2{6 describe a frequency
modulated communication system, the Extended Kalman
Filter (EKF) [11, Section 8.2] is essentially a phase-
locked loop (PLL), and the PLL is an excellent esti-
mator. Therefore, we compute the estimates âi(kjk),

�̂i(kjk), f̂i(kjk), and �̂i(kjk) (hereafter, we will not in-
dicate the conditioning which is always kjk) by using
the EKF for this more complicated model. The com-
putational requirements are minimal: the state equa-
tion is already linear, the one-step state transition ma-
trix (denoted by F ) is block diagonal (1 block per for-
mant) and each block is sparse so multiplication by F

is inexpensive, and the observation is a scalar so the
one matrix inversion is actually division by a scalar.
The result of the EKF are the estimates âi(k), �̂i(k),

f̂i(k), and �̂i(k). From these estimates we can com-
pute a reconstructed speech signal, denoted by ŷ(k),

by ŷ(k) =
P

i âi(k) cos(�̂i(k)).
More sophisticated nonlinear �lters than the EKF

could also be used, e.g., Refs. [12, 11, 13]. However, we
have achieved interesting results using the simple EKF
and, when using more sophisticated �lters, problems of
robustness and failure of the model statistics to match
the data statistics become more severe.

5. SPEECH EXAMPLE

In this section we describe the application of these ideas
to the sentence \Even then, if she took one step forward

he could catch her." from the TIMIT database [14,
dr1/fcjc0/si1207]. The model has 4 formants with ini-
tial conditions mfi;0 of 500, 2000, 2900, 4100 Hz for
i = 1, 2, 3, and 4 respectively. For all 4 formants,
�ai

= ��i = :99, pfi;0 = 0, and p�i;0 = 0. The val-
ues of qai

, q�i , and qfi vary from formant to formant:
qai

=
p
1700;

p
120;

p
220;

p
3000; q�i =

p
61; 7; 10; 10;

and qfi =
p
1:5;

p
1:5;

p
1:5; 1 for i = 1; 2; 3; 4 respec-

tively. Finally, r =
p
1=12. The spectrogram of the

original speech with superimposed plots of the esti-
mates f̂i(k) is shown in Figure 1(a). [The spectrogram
is computed by dividing the signal into 8 ms frames
(each contains 128 samples) with 4 ms (64 sample)
overlap between adjacent frames and then computing
the magnitude (in dB) of the 128 point FFT of each
frame]. In Figures 1(a,b), the formant tracks extend
through regions of the spectrogram where there is lit-
tle energy because at sample k we plot the ith formant
track f̂i(k) even when the energy in the ith formant
(essentially the energy in ai(k)) is small. The spec-
trogram of ŷ(k) (i.e., the speech reconstructed from
the EKF outputs) is shown in Figure 1(b) and closely
matches the speech spectrogram shown in Figure 1(a).
Figures 1(a,b) demonstrate the smooth behavior of the
the EKF estimates and the accurate reconstruction of
the speech in unvoiced regions even though the model
used by the EKF is really a model for voiced speech.

6. SPEECH RECOGNITION

In the Hidden Markov Model (HMM) approach to speech
recognition, the initial step is to transform the speech
signal into a sequence of feature vectors. By remov-
ing aspects of the speech signal that are irrelevant for
recognition, this step achieves data compression and
simpli�es the estimation of conditional measurement
probability densities in the HMM. If the AM-FM mod-
ulation model for speech production describes physical
behavior that is missing in linear speech production
models, then features based on the AM-FM modula-
tion model may improve the performance of HMM rec-
ognizers.

A natural �rst step toward using AM-FM features
is to determine how the AM-FM model can be used
to generate features analogous to standard features.
Two important classes of standard features are spec-
tral features derived from �lter banks and from linear
predictive coding (LPC) [15] and here we focus on �lter
banks. Let s(k) be the input speech signal and Hj(z)
be the �lters in the bank which are FIR linear phase �l-
ters with center frequencies fj and bandwidths Wj and

which approximately satisfy
PJ

i=j Hj(exp(j
)) = 1.
We pass s(k) through Hj to generate yj(k). We trans-
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Figure 1: The sentence \Even then, if she took one step forward he could catch her." (a) Original spectrogram
and estimated formant tracks. (b) Reconstructed spectrogram and estimated formant tracks. (c) Standard �lter
bank features. (d) EKF-based features.



form from passband to baseband by low pass �lteringp
2yj(k) cos(2�fjTk). We subsample the result based

on the bandwidth Wj to give a set of signals uj(k). At
least approximately it is possible to recover the speech
signal s(k) from the signals uj(k). Traditional �lter
bank features, denoted by �j(k), are computed by tak-
ing the absolute value of uj(k), low pass �ltering, and
subsampling to the frame rate where the bandwidth
of the low pass �lter is chosen so that the frame rate
is the Nyquist rate. New features analogous to �lter
bank features and denoted by �j(k) are computed in
two steps. First, apply an EKF (based on a 1 formant
model with f1 �xed at 0) to the signals uj(k), to esti-

mate âj(k), �̂j(k), and �̂j(k). Then apply exactly the
same processing used to transform uj(k) to �j(k) for
traditional features to transform âj(k) to �j(k) for new
features. The reason we compute uj(k) signals in a way
that makes it possible to at least approximately recon-
struct s(k) is that the AM-FM model is supposed to be
a speech production model so it is most natural to use
it on signals from which speech can be reconstructed.
The reason for applying the EKF to uj(k) rather than
the speech itself is that it requires less computation: in
order to get narrow band estimates we would have to
generalize the model of Eqs. 2{6 with some of the ideas
in the �nal paragraphs of Section 3 and a J-formant
model of that type requires signi�cant computation.

In Figures 1(c,d) we show the j = 3 components of
traditional and new features for a system with J = 9;
80th order linear phase FIR bandpass �lters with pass-
bands of [100, 400], [400, 700], [700, 1000], [1000, 1350],
[1350, 1800], [1800, 2400], [2400, 3280], [3280, 4690],
[4690, 7150]; a 300 Hz bandwidth for the �rst low
pass �lter; a subsampling by 1/26 to compute uj(k);
a 33.3 Hz bandwidth for the second low pass �lter; a
subsampling by 1/9 to compute �j(k); and an EKF
with parameters qa = 1, q� = 9, �a = �� = 0:99, and
r = 0:2. The plots are time-shifted to remove the de-
lay introduced by the linear phase FIR �lters. With
this set of EKF parameters, the two sets of features
(Figures 1(c,d)) are very similar because the EKF is
constructing the signal primarily by varying the ampli-
tude a(k) with only small variation of the phase �(k).
If the bandwidth of a(k) in the model used by the EKF
is decreased, then the EKF constructs the signal with
more equal variation in the amplitude a(k) and the
phase �(k).

Similar processing applied to �̂j(k) � 2�fjTk will
yield new features, which are phase-sensitive features,
based on the AM-FM model.
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