
A ZERO-TREE LIKE CODEC USING NONLINEAR SIGNAL

DECOMPOSITIONS
1

J. L. Paredes G. R. Arce N. C. Gallagher

Department of Electrical Engineering
University of Delaware
Newark, DE 19716

ABSTRACT

In this paper a nonlinear signal decomposition for image

compression is presented. It uses a pyramid multiresolution

scheme which is similar to that found using wavelet sub-

band decompositions. The self-similarity across the di�er-

ent scales of the nonlinear signal decomposition is then ex-

ploited by the SPIHT algorithm which is modi�ed to match

the new signal decomposition. The nonlinear decomposition

produces better edge preserving and less blocking artifacts in

the reconstructed image than traditional wavelet decomposi-

tion, specially at very low bit rates.

INTRODUCTION

Recently, numerous image codecs which exploit the self-
similarity of the wavelet transform among the di�erent s-
cales have been introduced. The embedded zero-tree codec
introduced by Shapiro in 1993 [1] and the Set Partitioning
in Hierarchical Trees (SPIHT) [2] are examples of this class
of codecs. Among all coding methods, these codecs have
the best performance for low bit rate compression (i.e. 0.5
- 0.2 bpp). For very low bit rate compression (below 0.2 bp-
p), however, these coding methods produce severe artifacts
leading to unacceptable performance.

In this paper we show that nonlinear signal decompo-
sitions are well suited for zero-tree like coding and that
codecs utilizing nonlinear signal decomposition perform sig-
ni�cantly better than traditional zero-tree like codecs using
wavelet transforms, particularly at very low bit rates.

Our codec borrows its structure from the SPIHT algo-
rithm but uses an order statistic signal decomposition in-
stead of the traditional wavelet signal decomposition. Con-
sequently, the algorithm must be modi�ed such that di�er-
ent subbands must be weighted according to their inuence
on the reconstruction. The order in which the coe�cients
are encoded not only depends on their magnitude (as in the
wavelet case) but also of their position within the di�erent
subbands.

The nonlinear �lter bank used in the decomposition is
based on the so called median a�ne �lter [3] which can
be tuned to the desired level of nonlinearity ranging from a
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standard linear FIR �lter to a median �lter. We pro�t from
the best attributes of both �ltering methods in a tunable
fashion. Thus the preservation of edges and details which
are the best characteristics of the median �lter as well as
the e�ectiveness of the linear �lter in smooth image regions
can be exploited jointly.

NONLINEAR DECOMPOSITION

Let p be the set of pixels that de�nes the original image
such that pi;j represents the value of the element (pixel) of
the original image in the coordinate (i; j). We de�ne the
polyphase components of the original image as the subsets
of pixels x00, x01, x10, and x11 such that

x00 = fx00i;j = pi;j for all i-even and j-eveng

x01 = fx01i;j = pi;j for all i-even and j-oddg

x10 = fx10i;j = pi;j for all i-odd and j-eveng

x11 = fx11i;j = pi;j for all i-odd and j-oddg

As shown in Fig. 1, the nonlinear decomposition is ob-
tained as follows. The original image, p, is split into it-
s polyphase components x00, x01, x10, and x11 as above.
Next, the \low-low" subband Y00 is simply x00, a subsam-
pled version of the original image. The x00 polyphase is
used to predict the x11 polyphase, thus, the prediction er-
ror de�nes the \high-high" subband, i.e. Y11 = x11 � x̂11,
where x̂11 = F(x00) is the predicted value of x11 from x00
samples. Both components x00 and x11 are used to predict
the x01 and x10 components and the di�erence between the
real and predicted values form the \high-low" and \low-
high" subbands respectively [4]. Fig. 2 shows graphically
the nonlinear decomposition.

The structure shown in Fig. 1 is similar to that present-
ed in [5, 6], hence, itself guarantees perfect reconstruction
from the subband coe�cients regardless of the �lter used.
Thus the original polyphase components as function of the
subbands are given by:

x00 = Y00

x11 = Y11 + F(x00)

x01 = Y01 + F(x00; x11)

x10 = Y10 + F(x00; x11)

It is clear that the choice of the �lter F is very impor-
tant. In our simulations we used the median a�ne �lter
[3] since it can be suitably adapted to the desired level of
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Figure 1: Nonlinear �lter decomposition.

nonlinearity ranging from a standard linear FIR to a medi-
an �lter. Thus, it is possible to select the most appropriate
�lter so that it yields the best energy compaction in the de-
composition. The output of the median a�ne �lter is given
by:

x̂11 =

P
i;j2W

g

�
x00i;j

�xmed
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�
wi;j

; (1)

whereW is the observation window which contains the sam-
ples used to get the prediction of x11, xmed is the sample
median and wi;j are the prediction weights. The function
g(:) is called the a�ne function and its main objective is to
give a measure of the proximity of each sample in the ob-
servation window (W) to the sample median. Thus, those
samples that are close to the sample median are assigned a
high a�nity (� 1), whereas, those that are distant to the
sample median are assigned a low a�nity (� 0). The a�ne
function is constrained to be unimodal and to have a max-
imum value of one at the origin. There are many function-
s that satisfy these requirements, one of them which was
used in our simulations is the Gaussian a�nity function

exp(
�(x��)2


), where  is a tunning parameter which deter-

mines the desired level of linearity. Note that as  ! +1
the median a�ne predictor behaves like a linear predictor
and as  ! 0 its behavior is like a median predictor. There-
fore, in a tunable fashion, it is possible to exploit the best
qualities of both �ltering methods.

The recursion of the nonlinear �lter bank over the \low-
low" subband, Y00, generates a pyramid like wavelet decom-
position. In Fig. 3, we show a three level subband decom-
position found using nonlinear �lter bank and wavelet.

MODIFIED SPIHT

Once the decomposition is obtained, the resultant coef-
�cients are passed through the SPIHT codec. This codec
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Figure 2: In Fig. 2a the polyphase components x00, x01,
x10, x11 are shown. In Fig. 2b the x00 polyphase (black
dots) are used to predict the x11 polyphase (grey squares)
of Fig. 2c. In Fig. 2d the x00 and x11 polyphases are used
to predict the x01 (grey rhombus) and x10 (white squares)
polyphases.

is designed to exploit: (1) Energy compaction, and (2) The
self-similarity between subbands such that the coe�cients
are expected to be magnitude ordered if we move downward
in the subband decomposition following the same spatial
orientation [2].

This algorithm, however, is originally based on the wavelet
decomposition, hence, the importance in the encoding of the
coe�cients is determined only by the magnitude of the co-
e�cients. This follows as a result that the Euclidean norm
is invariant to unitary transformations. Since the nonlinear
transforms used here, are not unitary, the error norm in the
transformed space will not be necessarily the same in the re-
constructed space. Hence, the magnitude of the coe�cients
as well as their position in the pyramid decomposition must
be taken into account in the coding stage. For this reason,
the SPIHT codec must be modi�ed according to the char-
acteristics of the nonlinear decomposition such that those
coe�cients that yield the largest distortion reduction are
given more priority in the encoding stage.

The structure of the proposed nonlinear decomposition
is such that an error in a coe�cient in the highest level of
the pyramid will have more inuence in the reconstructed
image than an error of equal and possible larger amplitude
in any other level. Moreover, at the same level, except in
the highest level, the \high-high" subband which is used to
predict the x01 and x10 polyphase components of the next
level, introduces more distortion than that introduced by
an error in the corresponding \high-low" and \low-high"
subbands at the same decomposition level. Thus, those
subbands that are more important in the reconstruction, as
related to their inuence in reducing the distortion of the
reconstructed image are given more priority. As a measure



(a) Nonlinear �lter decomposition.

(b) Wavelet decomposition.

Figure 3: Three level subband decompositions.

of distortion we use the peak signal-to-noise ratio PSNR
de�ned as:

PSNR = 10 log10

�
2552

MSE

�
dB; (2)

where MSE de�nes the mean square error between the o-
riginal and reconstructed images given by:

MSE =
1

MN

NX
i=1

MX
j=1

(pi;j � p̂i;j)
2
; (3)

with M and N as the size of the original image.
In order to minimize this error a certain rule of impor-

tance should be established in the encoding of each sub-
band. One way to de�ne this importance is to assign to
each subband, a weight according to its inuence in the
reconstruction.

Error subband PE
(n)

l;m Weights

Y
(3)

00 21.44 1.00

Y
(3)

11 10.95 0.71

Y
(3)

01 5.72 0.52

Y
(3)

10 5.72 0.52

Y
(2)

11 3.12 0.38

Y
(2)

01 1.84 0.29

Y
(2)

10 1.84 0.29

Y
(1)

11 1.25 0.24

Y
(1)

01 1.00 0.22

Y
(1)

10 1.00 0.22

Table 1: Propagation error for a three level signal decom-
position and weighted values for each subband.

To �nd such weights, let 4Y
(n)

l;m be an error in a coef-

�cient in the (l;m) subband at the nth level of the decom-
position, where (l; m) 2 f(0; 0); (0; 1); (1; 0); (1; 1)g repre-
senting the low-low, high-low, low-high and high-high sub-
bands respectively, the decomposition level is indexed as
n = 1; 2; 3; . . .n0 with n0 as the last level of the decomposi-
tion.

The error in a reconstructed pixel that is a�ected by

4Y
(n)

l;m can be expressed as:

4pi;j = pi;j � p̂i;j = ki;j4Y
(n)

l;m (4)

where pi;j and p̂i;j are the original and reconstructed pix-
els respectively, and ki;j is a parameter that measures the

inuence of the 4Y
(n)

l;m on the pixel pi;j , given by:

ki;j =
@pi;j

@Y
(n)

l;m

. (5)

Of course, this parameter depends on the proximity of

the pixel pi;j to the error coe�cient4Y
(n)

l;m . Hence, for those

pixels distant from the location of 4Y
(n)

l;m , and thereof not
a�ected, this parameter is equal to zero.

When there is only one error, 4Y
(n)

l;m , the MSE given by

( 3) can be expressed as a function of these parameters ki;j
as:

MSE =
(4Y

(n)

l;m )2

MN

NX
i=1

MX
j=1

k
2
i;j : (6)

The term

PE
(n)

l;m
=
XX

i;j2S

k2i;j (7)

is called the propagation error of the subband (l;m) at the
nth level of the decomposition, and S is the set of pixels that

are a�ected by the error 4Y
(n)

l;m . This propagation error is
identical for all the coe�cients in a same subband and level,
except possibly for the coe�cients on the boundary between
consecutive subbands.

Table 1 shows the propagation error found for a three
level signal decomposition using a mean �lter with 2 x 2
window size. From this table, one can see for example that



Figure 4: Original image. 256 x 256 pixels. 8 bits per pixel.

at level-3, the low-low subband is more important than the
high-high, but the high-high is more important than the
low-high and high-low.

As an example of how the PE
(n)

l;m values were deter-
mined, consider a coe�cient error in the high-high subband

of the �rst decomposition level (4Y
(1)

11 ). According to the

decomposition, the Y
(1)

11 is used to determined the x01 and
x10 components of the original image, hence, an error in any

coe�cient (i; j) in Y
(1)

11 will a�ect only the reconstruction
of its four pixels closest to it. For any of these neighboring
pixels we have:

pi;j = Y
(1)

10 (i; j) + 1=4[Y
(1)

00 (i; j) +

Y
(1)

00 (i+ 1; j) + Y
(1)

11 (i; j) + Y
(1)

11 (i; j + 1)]

ki;j =
@pi;j

@Y
(1)

11

= 1=4:

Using PE
(n)

l;m =
PP

i;j2S
k2i;j ,

PE
(1)

11 = (1=4)2 + (1=4)2 + (1=4)2 + (1=4)2 + (1)2 = 1:25

The term (1)2 includes the error Y
(1)

11 itself. In the same

way an error in either Y
(1)

01 or Y
(1)

10 does not a�ect any other

pixels that itself, hence, PE
(1)

10 = PE
(1)

01 = 1.
In order to �nd the weights that must be assigned to

each subband, let 4Y
(n0)

00 be a coe�cient error in the low-

low subband and 4Y
(n)

l;m be a coe�cient error in any other
subband. These two errors produce the same distortion
(same MSE) if the magnitudes of the errors are related as
follows:

4Y
(n0)

00

4Y
(n)

l;m

=

s
PE

(n)

l;m

PE
(n0)

00

(8)

where PE
(n0)

00 > PE
(n)

l;m for all l; m and n (l; m 6= 0; 0 and n 6=

n0). Thus, a coe�cient error of magnitude 4Y
(n)

l;m produces

the same distortion than that produced by a coe�cient er-

ror in the low-low subband of magnitude

r
PE

(n)

l;m

PE
(n0)

00

4Y
(n)

l;m .

(a)

(b)

Figure 5: Compression rate = 0.1bpp. (a) Standard SPIHT.
(b) Nonlinear SPIHT.

This suggests that if each subband (l;m) at the nth level
of the decomposition is weighted by:

W
(n)

l;m =

s
PE

(n)

(l;m)

PE
(n0)

00

(9)

the MSE is minimized, where PE
(n)

l;m is the propagation er-

ror of an error in the subband (l;m) at the nth level of the

decomposition and PE
(n0)

00 is the propagation error of an
error in the low-low subband. Table 1 shows the di�erent
weights found for a three level decomposition.



Thus, before the transformed coe�cients are encoded,
these are weighted according to ( 9) at the di�erent levels,

i.e. c0i;j =W
(n)

l;mci;j where ci;j are the transform coe�cients

in the subband (l;m). Of course, the nonlinear signal de-
composition must guaranty perfect reconstruction when no
compression is done, hence, an inverse process is applied
after the decoding operation. After decoding, the received
coe�cients are then weighted so as to emphasize the high
frequency components. This same procedure was used with
the standard SPIHT codec but the results were not favor-
able and thus it was not used in that case.

Although the above analysis was done when F is con-
strained to be a linear �lter, the weighting structure pro-
duces good results even when the �lter introduces nonlin-
earities.

(a)

(b)

Figure 6: Compression rate = 0.15bpp. (a) Standard SPI-
HT. (b) Nonlinear SPIHT.

SIMULATIONS

In order to evaluate the proposed approach, we compare
the results obtained with the new algorithm (nonlinear SPI-
HT) with those obtained by the standard SPIHT algorithm.
Fig. 4 shows the original test image which was compressed
to 0:1 and 0:15 bit per pixel (bpp). The coded images at
0.1 bpp and .15 bpp are shown in Figs. 5 and 6 respectively.
The tunning parameter, (), of the median a�ne �lter was
�xed to 1 which yields in general, good performance.

As shown in Figs. 5 and 6 the ringing artifacts around
edges with the standard SPIHT algorithm are very disturb-
ing, particularly at compression rates 0.1 bpp. These ar-
tifacts are not present with the nonlinear SPIHT coded,
moreover, the edges are better de�ned in the nonlinear SPI-
HT than in the standard SPIHT. However, the standard
SPIHT yields a better performance in the PSNR measure
sense than the nonlinear SPIHT does (the PSNR in the s-
tandard SPIHT is approximately 1.5 dB larger than that
in the Nonlinear case). We believe that at very low bit
rates the most appropriate measure of performance is sub-
jective and, in general, MSE based measures are not good
indicators of image quality.

CONCLUSIONS

We have presented a nonlinear signal decomposition
which uses a recursive nonlinear �lter banks to get a pyra-
mid decomposition similar to that found using wavelet. The
self-similarity across di�erent scales is then exploited by the
SPIHT algorithm which was suitably modi�ed according to
the nonlinear decomposition yielded better image compres-
sion results at low bit rates.
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