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ABSTRACT

We investigate the use of Iterated Function Systems (IFS)
for modeling and compressing 2 dimensional fractal images
by exploring solutions of the Inverse IFS Problem: Given
a fractal image we are looking for parameters in 24 dimen-
sions for a small set of a�ne maps and their associated
probabilities which constitute the IFS. Upon iteration the
IFS solution produces an attractor with the characteristics
which describe the image under consideration. We use a Ge-
netic Algorithm (GA) and a Neural Network (NN) scheme
which simulates the IFS. A sample cross section of the error
hypersurface within the \Mandelbrot set" in the parameter
space of a 3-map IFS family is shown. The solution ob-
tained with the GA, in the 18 or 24 dimensional parameter
space, meet the desired speci�cations which describe the
original image to within the given discretization. Applica-
tions of the inverse problem are aimed towards prediction
of second order phase transitions, where scale invariance
and power laws are encountered, as well as towards image
compression.

1. INTRODUCTION

An abundance of natural systems exhibit complex behav-
ior [1], [2] which often results in the formation of spatial
or even temporal structures which cannot be described by
static Euclidean geometry. Examples are objects whose
fragmentation is preserved at all scales such that a small
piece of them is structurally similar to the whole. Trees,
clouds, fractures, and coastlines are among objects depict-
ing spatial scale-free structure. Mandelbrot named these
objects, whose dimension is most often fractional rather
than integral, Fractals, and the geometry necessary for their
description Fractal Geometry [3]. As he stated [4], Fractal
geometry is a workable new middle ground between the ex-
cessive geometric order of Euclid and the geometric chaos of
general mathematics. During critical phenomena, in addi-
tion to scale invariance, systems, however diverse from each
other, also incorporate temporal scale-free behavior, while
their macroscopic quantities exhibit power laws. Scale in-
variance and power laws are intrinsic to fractal geometry.
The underlying mechanism responsible for such pattern for-
mation is governed by nonlinear dynamics. Consequently,
fractals are attractors of dynamical systems.
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Due to the fact that there exist physically dissimilar
systems which have similar properties, especially in crit-
ical phenomena, in order to characterize and study their
phase space attractors, we are prompted to construct arti-
�cial models whose attractors belong in the same category.
Such modeling may be applicable to prediction of continu-
ous phase transitions. The model is therefore a mathemat-
ical tool which is a dynamical system in itself. An Iterated
Function System (denoted as IFS) is an example of such a
tool. As sources of deterministic fractals, IFSs were exten-
sively studied by Michael Barnsley and his colleagues, and
were used for image compression [5], [6].

An Iterated Function System consists of a speci�ed num-
ber of appropriately chosen functions or transformations
(linear or nonlinear) which as set operate iteratively on
their own output in a metric space. An IFS with prob-
abilities may be constructed when a probability-weight is
associated with each of the functions. The IFS produces
an orbit which converges within an object of fractal dimen-
sion. The functions used in this work are contractive a�ne
maps acting in the Euclidean plane. A probability is asso-
ciated with each of them. The object produced, namely the
attractor of the prescribed IFS, is an image whose fractal
density is distributed on top of an underlying fractal shape,
i.e., its support.

In order to use IFS for modeling, the solution to the In-
verse Problem for IFS becomes the subject of attention, for
the answer to the following question is given by it. Given
some fractal pattern corresponding to a complex physical
system, can we �nd a simple IFS whose attractor incorpo-
rates properties and characteristics of the pattern in ques-
tion? For this purpose, the inverse problem for IFS may be
de�ned as �nding parameters for a small number of a�ne
maps and their associated probabilities.

1.1. The IFS

All terms, de�nitions, and theorems concerning Iterated
Function Systems, used herein, may be found in the book
Fractals Everywhere by Barnsley [5]. As mentioned earlier,
our IFS consists of N a�ne transformations operating on
shapes in the Euclidean plane. Under a�ne transforma-
tions, several properties of shapes are preserved: straight
lines remain straight lines; parallel lines remain parallel;
the ratio of volumes, areas and line segments is preserved.
Thus, ellipses transform into ellipses, parabolas into parabo-
las, etc. In IR2, an a�ne map is representable by an 2� 2



matrix together with a shift:
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In our test case, the image to be modeled is a discretized
attractor �� of an IFS. �� represents the density of visited
points on its support A� (all the raised pixels). Using
Barnsley's collage theorem we assume that we can �nd at
least one IFS of contractive a�ne maps whose attractorA is
close in Hausdor� distance to A�, and whose density distri-
bution � (coded in color) is close in Hutchinson distance to
�� 1. The density of points on the attractor is distributed
proportionally to the probability associated with each a�ne
map [5]. The probabilities are adjusted implicitly to be pro-
portional to the normalized areas of their associated trans-
formation.

We explore solutions to the IFS inverse problem with
the use of a Genetic Algorithm (GA), in the forward itera-
tion method as de�ned in [5]. Forward iteration guarantees
that every iteration on the attractor with the IFS which
generated it, will map it onto itself with probability 1. A
signi�cant number of iterations (an average of 20 for images
embedded in 128�128 grid) is necessary for determining
whether a chosen parameter set actually causes the orbit of
the IFS to converge on an attractor whose Hausdor� dis-
tance from A� is su�ciently small.

We are searching for solutions in the parameter space of
the IFS, the hypercube [�1;+1]6N , where each point repre-
sents an IFS attractor. We are interested in the neighbor-
hood of the boundary of the Mandelbrot set (that is, the
set of stable periodic points of the dynamical system) asso-
ciated with our parametrized IFS family. The test images,
embedded in the unit square, covered two categories of IFS
attractors:

1. Just Touching, with test image the \fern" attractor
of Figure 4(A).

2. Minimally Overlapping, with test image the \leaf"
attractor of Figure 5(A).

1.2. The GA

We chose to use a GA in order to search for the 6N a�ne
parameters of an IFS whose attractor is an acceptable so-
lution, for the following reasons: First, it has been ob-
served [7] that GAs consistently outperform other meth-
ods of stochastic search on problems involving discontin-
uous, noisy, high-dimensional, and multimodal objective
functions, as is the case of the Inverse IFS problem. This is
demonstrated in Figure 1: A projection of the Mandelbrot
set in the 18-D parameter space of the 3-map IFS fam-
ily is plotted (top). The projection was purposefully cho-
sen to partly cover the niche containing the point \fern"
(white regions). In the bottom section, the error landscape
within the inner rectangle is plotted. Here, however, we ob-
serve that this projectional slice misses the \fern" minimum
(0:067; 0:51) (due to the introduced randomness) because
the largest peak is not located exactly on it. We conclude

1The Hausdor� distance measures "nearness" between shapes
of two images. The Hutchinson distance measures "nearness"
between density distributions residing on top of those shapes.

that an automated search will be quite complicated and for
that we prefer to represent the IFS with a binary string.

Genetic Algorithms were developed by Holland in the
1960s [8], [9] after the paradigm of natural evolution. De-
tailed description of GAs may be found in the books by
Goldberg [10] and Michalewicz [11]. In brief, each genera-
tion of species is represented with a time step of an iterative
procedure. The GA maintains a population P of n individu-
als si; i = 1; : : : ; n which, during each generation, undergo
genetic operations and are evaluated according to their �t-
ness in their environment thus producing a new population
of candidate solutions to an objective (�tness) function f .

P(t) = fs1(t); s2(t); : : : ; sn(t)g (2)

Each individual si is formed by a chromosomal binary string
of length l in which the vector of parameters of the func-
tion f(x) is encoded. A Simple GA procedure is shown
in Figure 2. The genetic operator of crossover, applied
with a probability C rate, produces individuals represent-
ing new points in the search space. Additional variation in
the genotype is achieved with the operator of mutation.
Under mutation, a gene's value (bit) is altered with a very
small probability M rate, thus simulating a random walk
through the string space. The �ttest individual of the last
population will be considered as the acceptable approxi-
mate solution to the objective function f .

2. ENCODING THE IFS ON A GA

Each IFS-chromosome consists of a binary string. We as-
signed 10 bits per parameter, of which one bit was reserved
for the sign, to ensure an accuracy of 0:005. Encoding 6
parameters per a�ne transformation and up to N a�nes
per IFS (N = 4), yield a string length l= 60 � 4 = 240 bits.

2.1. Initializing the Population

In the real world the only available data is a discretized im-
age which is not necessarily an IFS attractor. We therefore
do not know of any particular niche in the parameter space
where an IFS attractor (point) might resemble its char-
acteristics. For an automated search, we must randomly
choose a vast number of points from the entire hypercube
P = [�1;+1]24! To bypass this problem, we select vital
points as follows: While randomly scanning the parameter
hypercube, we construct a large number of chromosomal
strings which loosely satisfy constraints derived from the
Collage Theorem. For that to hold, the area generated
after one iteration on A� should cover it almost exactly.
We therefore require that each a�ne transformation should
be contractive and map the image mostly within itself in
one iteration. The individual a�ne maps should be ar-
ranges within A� such, that there is only minimal overlap
between them. The IFS chromosome, then, consists of N
such maps stacked in a single string. To reduce initializa-
tion time, we approximated the area of convex attractors
with the area enclosed by only eight extremities. We then
imposed the constraint that after being mapped once, the
eight extremities should lie within the approximated area.
The \gene-pool", described further below, is also formed by
this method. Next, assuming that the area of each a�ne



OPTIMIZATION  FUNCTION  LANDSCAPE

Figure 1: Projection of the Mandelbrot set (top) and error-
landscape (bottom) for the 3-a�ne IFS family near the fern
minimum. The slice is generated by randomly deviating two
of the 18 parameters within the slice [�0:01; 0:01], while
all other 16 parameters remain unaltered at their original
fern values. Solutions exist only in the white regions (Top).

t  0;

initialize P(t);

evaluate P(t);

while (not finished) do

t  t + 1;

select P(t) from P(t - 1);

operate on P(t);

evaluate P(t);

end;

Figure 2: Sketch of a Simple GA procedure.

map is proportional to the determinant of the matrix [12],
we required that each determinant is smaller than unity
while their total sum nearly equals one, so that the follow-
ing holds:

Area of A =

NX
k=1

(jdet akj � (Area of A)) : (3)

where ak is the linear part of the 2-D a�ne transformation
wk(x) = akx+ b.

The population size n represents the number of sam-
pling points in parameter space and is usually dependent
on the chromosomal length l. For large l, n it can be of
the order of thousands, resulting in slow evaluation. An im-
mense population size would defeat the purpose of GAs who
are meant to introduce new sampling points. A tiny one,
on the other hand, could force the GA into premature con-
vergence on the �rst \good enough" local minimum. The
required size also depends on how diverse and �t the initial
points are. To ensure a diverse selection of them, we intro-
duced a Gene Pool. That consists of a very large number of
individuals (sampling points) which satisfy the aforemen-
tioned constraints. The �rst n members of the pool consti-
tute the initial population. Unacceptable chromosomes on
every third generation are replaced with randomly chosen
ones from the Gene Pool. This method permits the use of
small enough populations, typically of 100� 500 members,
which minimizes computational time, while preventing pre-
mature convergence.

2.2. IFS-GA Genetic Operators

The fractal depends continuously on the IFS parameters.
A ip of a sign on one of the parameters, however, which
represents a jump in parameter space, may result in some
minor alteration of the given image by causing, for exam-
ple, a reection on one of the transforms. Despite visual
similarities of such attractors, the error between them may
be quite large, while their surrounding neighborhoods may
possibly constitute viable niches in the �tness landscape.
The GA is capable of reaching such distant points in a sin-
gle step with the crossover or with the mutation operators.
The population size, and the crossover and mutation prob-
abilities were adjusted empirically, and the values used for
obtaining the minima of Figures 4(B) and 5(B) are summa-
rized in Table 1.

Table 1: Genetic Algorithm parameters

Image n l C rate M rate

fern 4(B) 500 240 0.75 0.00067
leaf 5(B) 500 240 0.75 0.00067

3. THE GA SEARCH

The search aims towards recovering the fractal properties of
the invariant support A� and the p-balanced measure �� of



the IFS. The value of the invariant total measure is recov-
ered in both categories of the test images. Just-touching IFS
attractors (as is the fern) are more sensitive to the dis-
cretization than the overlapping IFS. It is therefore more
di�cult to recover the fractal dimension. For attractors of
overlapping IFS (as is the leaf) the GA has a much better
performance in approximately identifying intersecting areas
and optimizing the total density distribution [Figure 4(B)].

3.1. De�nition of symbols

N
�: Total number of raised pixels in the

test image.
N : Total number of raised pixels in the

constructed image.
N0: Total number of raised pixels after 1

iteration on the test image with the IFS
N0 is used to verify the Collage theorem.

��: Total invariant measure of the test
image.

� : Total invariant measure of the
constructed image.

s : Contractivity factor.
not raised: Number of pixels in the

test image that are not raised.
plot out: Number of raised pixels in the

constructed image that do not belong
to the test image.

coverage: Fraction of the test image that is
covered by the constructed image.

3.2. Objective (Fitness) Function

The objective function both speci�es the features to be
looked for in terms of their errors, and guides the algorithm
towards an acceptable solution. We formulated a general
function to accomodate both classes of images within the
unit square. The exact location of the image inside the
square is to be found. Flipping the sign of one of the pa-
rameters moves the search in a separate niche, which in
general implies the existence of discontinuities. To ensure
diversity in the chromosomal structure we maintained the
seemingly uninteresting regions of the error landscape, as
high plateaus, by imposing penalties.

Our �tness function [12] consists of the sum of the er-
rors:

1. V1 = The Hausdor� distance.

2. V2 = The Hutchinson distance and the di�erence in
the total invariant measure.

3. V3 = The pixel overlap together with the di�erence
in the total number of raised pixels between the test
image and the constructed image.

The error landscape is smoothed with the sigmoidal �lter
(Eq. 4) whose constants were empirically chosen in the �rst
few (< 10) evaluations. The three errors adjust relative to
each other during each evaluation, thus preventing domi-
nance of one of them, a primary cause of premature con-
vergence. The overall form of the objective function is:

ERROR = ERROR1 + ERROR2 + ERROR3 =

=

3X
i=1

3
p
Vi

1 + exp[�i � (V0i � Vi)]
: (4)

The function's robustness is veri�ed in the vicinity of the
(3-a�ne IFS { no stem) fern parameters with the gradi-
ent descent (powell [13]) method. The initial condition
is shown in Figure 3(A). Smoothing the landscape had a
tremendous e�ect, as shown in Figure 3(C) which depicts
the minimum where powell arrived and which is very close
to the global [Figure 3(B)], (see Table 2). 2.

Table 2: The gradient descent algorithm powell performed
remarkably well in minimizing our objective function, when
starting from the Initial condition of Figure 3(A).

true fern initial powell on

3 affines condition IC

(IC)
N 1680 534 1695
N0 1680 1428 1632

not raised 0 1185 261
plot out 0 39 276
coverage 100% 44.72% 84.09%

� 20.54 13.26 20.54
Df 1.638 1.629 1.638
s 0.850 0.75 0.854

Figure 3: (A){Top: Initial Condition for powell. (B){Left:
3-a�ne (no stem) fern test image. (C){Right: powell min-
imum.

2The IFS parameters for all the images may be found in [12].



Table 3: Summarized results for the fern attractor: The
GA solution found on the hypercube [�1:0; 1:0]24 of the
parameter space P , overall recovers some fractal character-
istics of the test image more accurately than the minimum
in the neighborhood of the true fern, found with Powell's
method (despite the apparent similarity of the patterns of
Figure 3).

true fern GA+ powell

4 affines on hypercube

[�1:0; 1:0]24

N 1723 1723
N0 1723 1663

not raised 0 255
plot out 0 195
coverage 100% 86.71%

� 20.70 20.70
Df 1.638 1.920
s 0.850 0.652

Figure 4: Just Touching case: (A){Left: 4-a�ne fern test
image. (B){Right: GA minimum (initial points are ran-
domly selected). These images, apparently dissimilar, share
similar characteristics (Table 3) and coordinates.

3.3. The GA's search in the parameter hypercube
P = [�1:0; 1:0]24

3.3.1. Just-touching IFS (fern)

For just-touching IFS, a very �ne grid should be used in
order to preserve the intricate �ne structure. Doubling the
resolution increases the computation time 8-fold: each mag-
ni�cation is four times larger than the previous, and the
iterations necessary for convergence double. Although par-
allel computing would be most appropriate, we performed
all experiments serially. A grid of 1282 pixels comprises the
smallest size in which the most important characteristics
of the image are still preserved. Many of the points of the
fern in this size grid appear to be touching, which means
that the GA will be looking for an overlapping IFS, and
we do not expect the fractal dimension to be recovered in
this class of images. In general, the fractal dimension is
determined by the slope in the ratios

log(number of raised pixels)

log(1=size of a pixel)

calculated at various magni�cations. This ratio on the 1282

grid, however, is found exactly:

log(N�)

log(1=pixel size)
=

log(1680)

log(128)
= 1:530

log(N)

log(1=pixel size)
=

log(1663)

log(128)
= 1:528 (5)

From the above numbers and from the summarized results
of Table 3 we conclude that the GA performed quite well on
the 128� 128 grid for N = 4 a�nes. But we also conclude
that coarse grids may convey misleading information for
just-touching IFS attractors. The �ttest IFS chromosome,
found by the Genetic Algorithm, produced the attractor
shown in Figure 4(B).

Table 4: Summarized results for the leaf attractor: The
IFS found by the GA on the hypercube [�1; 1]24 of the
parameter space P , satis�es the criteria for solution, and
also approximates the mass distribution.

true leaf GA+ powell on

hypercube

[�1:0; 1:0]24

N 3563 3588
Collage N0 3563 3569
not raised 0 350
plot out 0 375
coverage 100% 89.86%

� 980.07 979.72
Df 1.947 1.942
s 0.60 0.61

Figure 5: Minimally Overlapping case: (A){Left: 4-a�ne
leaf test image. (B){Right: GA minimum (initial points are
randomly selected). These images, apparently dissimilar,
share similar characteristics (Table 4) and coordinates.

3.3.2. Minimally Overlapping IFS (leaf)

The minimally-overlapping leaf attractor is easier to solve
than the just-touching fern attractor, because the overlap
of its maps is preserved throughout various magni�cations,



thus allowing for a larger selection of potential solutions.
The minimum found by the Genetic Algorithm is shown in
Figure 5(B).

The contractivity factor for this IFS (N = 4) is s = 0:61,
which is very close to the original s = 0:60. Its fractal
dimension Df = 1:942, is almost exactly the same as the
original Df = 1:947. We note that the GA approximately
recovers the density distribution. The summarized results
for the leaf attractor are presented in Table 4.

4. APPLICATIONS AND CONCLUSIONS

In order to extract the essential properties which charac-
terize the fractal image under study, we used a GA to �nd
parameters for 4 a�ne maps explicitly and their associated
probabilities implicitly. The properties are incorporated in
the errors which constitute the objective function. The GA
is found to be a very robust algorithm in the sense that it
was easily adaptable to the IFS inverse problem and that
it does �nd solutions as speci�ed by the objective function.
Final convergence on the GA minima is achieved with the
use of a local optimizer, namely either the gradient descent
algorithm powell or a simplex method, due to Nelder and
Mead, namely the amoeba subroutine (Press et al. [13]).
From the two, powell is sensitively dependent on the form
of the evaluation function but is more accurate than amoeba.
The fractal characteristics of the images to be modeled,
especially in the minimally overlapping IFS case, were re-
covered to within 1% error of the total image-overlap, to
less than 1% error of the Hausdor� distance, and to less
than 1% error of the total measure of the fractal attractor.
The evaluation function was modi�ed with sigmoids so that
the landscape of the error hypersurface is smoothed. This
resulted in a better performance of the algorithm than the
\raw" distance functions used in the literature on both GAs
and SAs (Simulated Annealing algorithm) [14], [15].

Our technique aimed mainly towards modeling compli-
cated patterns, associated with complex physical systems,
whose structural complexity makes them di�cult to study.
In particular, the IFS-GA can correlate fractal spatio-tempo-
ral structures, found in nature, to simple hierarchical lat-
tices from which the Renormalization Group (RG) transfor-
mation can be formulated. From the RG a nonlinear IFS is
constructed whose attractor is the Julia set of the critical
manifold. The critical exponents are extracted from the Ju-
lia set thus revealing the behavior of the macroscopic quan-
tities near the critical region. This information is useful for
prediction purposes. In addition, these models become, in
essence, classi�ers of universality classes for spatio-temporal
fractal patterns encountered in criticality.

Finally, compression of generalized images with this me-
thod is a two-step process: A 2-dimensional image can be
compressed into a graph of a fractal function. The task of
the GA then, is to search in a 2N -D space, because four of
the parameters are linearly related by the function's conti-
nuity condition. This time, the number of maps N is vari-
able and can become large. Compression of fractal functions
has been studied extensively [16].
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