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ABSTRACT

In this paper we introduce a class of morphological oper-
ators with applications to sharpening digitized grey valued
images. We introduce the underlying partial di�erential
equation (PDE) that governs this class of operators. For
discrete implementations of the operator class, we show that
instances utilizing a parabolic structuring function, have
special properties that lead to an e�cient implementation
and isotropic sharpening behavior.

1. INTRODUCTION

In [1] Kramer et al. de�ne a novel non-linear transforma-
tion for sharpening digitized grey valued images. The trans-
formation replaces the grey value at a point by either the
minimum or the maximum of the grey values in its neigh-
borhood, the choice depending on which one is closer in
value to the original grey value. They show that after a
�nite number of iterations the resulting image stabilizes,
that is every point has become either a local maximum or
a local minimum.

In this paper we show that this transformation is an in-
stance of a class of morphological operators which all have
sharpening properties. Further, we show that there exists
another instance of this class of operators that outperforms
the original transformation introduced by Kramer in algo-
rithm order complexity and isotropic sharpening behavior.

2. INTRODUCTION TO MATHEMATICAL

MORPHOLOGY

In mathematical morphology [2] the transformation that re-
places the grey value at a point by the (weighted) maximum
of the grey values in its neighborhood is known as the grey
value dilation operator:

(f � g)(x) =
_

u
[f(u) + g(x� u)]

In which function f(x), f : x 2 Z2 7! f(x) 2 Z, is the
original image and g(x), g : x 2 Z2 7! g(x) 2 Z, is the
structuring function ("neighborhood").

The transformation that replaces the grey value at a
point by the (weighted) minimum of the grey values in its

neighborhood is known as the grey value erosion operator:

(f 	 g)(x) =
^

u
[f(u)� g(u� x)]

Note that in general the grey value dilation operator is ex-
tensive: (f � g)(x) � f(x) and the grey value erosion oper-
ator is anti-extensive: (f 	 g)(x) � f(x). Figure 2a) gives
an 1D example of the dilation and erosion operator.

3. STRUCTURING FUNCTIONS

In the remainder of this article we will only consider the fol-
lowing two structuring functions: First, the at structuring
functions as used by Kramer in its original de�nition of the
extreme sharpening operator:

c
�
(x) =

�
0 : x 2 S

�1 : x 62 S

where S is a disc of radius �. Second, the quadratic struc-
turing functions (QSF) as introduced by van den Boom-
gaard [3]:

q
�
(A)(x) = �q(A)(

x

�
) = �

1

2�
< x;A

�1
x >

where A is a 2�2 positive de�nite symmetric matrix. Tak-
ing the unity matrix for A will yield the parabolic struc-
turing function q

�(x) = � 1

2�
x
2. See for a 2D example of a

at structuring function and a parabolic structuring func-
tion �gure 1. In [4] van den Boomgaard et al. prove for the
class of quadratic structuring functions that:

� Any quadratic structuring function is dimensionally
decomposable with respect to dilation.

� The class of quadratic structuring functions contains
the unique rotational symmetric structuring function
that can be dimensionally decomposed with respect
to dilation: q�(x) = � 1

2�
x
2.

These properties allow for very e�cient algorithms for the
dilation operator that has be shown to be independent of
the structuring function size [4]. They are typically of or-
der complexity O(N), with N the number of pixels in the
original image. Note that for the class of at structuring
functions algorithms for the dilation operator typically have
order complexity O(�2N) and are dependent on the struc-
turing function size �.



a) b)

Figure 1: a) Parabolic structuring function q
�(x) = � 1

2�
x
2.

b) Flat structuring function c
�(x).

4. EXTREME SHARPENING OPERATOR

CLASS

In this section we give a de�nition of the extreme sharpening
operator class in terms of grey value dilation and grey value
erosion operators. Further, we show that iterations of the
extreme sharpening operator have sharpening properties.

4.1. Extreme sharpening operator class de�nition

First, we rephrase the original transformation de�ned by
Kramer in the framework of mathematical morphology:

E [f ](x; �) =

(
F
�(x; �) : case a.

F
	(x; �) : case b.

F (x; 0) : otherwise

where case a. stands for

F
�
(x; �)� F (x; 0) < F (x; 0)� F

	
(x; �);

case b. stands for

F
�
(x; �)� F (x; 0) > F (x; 0)� F

	
(x; �)

and where f(x) is the original function, g(x) is the struc-
turing function, x the position, � the scale, F�(x; �) = (f�
g
�)(x), F	(x; �) = (f 	 g

�)(x) and F (x; 0) = F
�(x; 0) =

F
	(x; 0) = f(x). (f � g)(x) and (f 	 g)(x) are the grey

value dilation and grey value erosion operators. This op-
erator class is parameterized by the structuring function
g
�(x). Setting the structuring function g

�(x) to a at struc-
turing function c

�(x) would result in the original de�ni-
tion of Kramer with one modi�cation: Kramer did not
consider the special case where F

�(x; �) � F (x; 0) equals
F (x; 0) � F

	(x; �). In that case the extreme sharpening
operator as de�ned by Kramer would behave as the grey
value dilation operator (F�(x; �)). In case of a single slope
signal (r2

f = 0 everywhere) the application of the opera-
tor de�ned by Kramer would result in a translation of the
original signal. Whereas this new de�nition would preserve
the original signal. Figure 2b) gives an 1D example of an
instance of the extreme sharpening operator class.
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Figure 2: a) 1D example of grey value dilation � and erosion
operator 	. b) Extreme sharpening operator.

4.2. Laplacian properties for 1D functions

For every 1D symmetric concave structuring function g
�(x)

the following properties of the extreme sharpening operator
class hold:

r
2
f(x) < 0! E [f ](x; �) > f(x) (1)

r
2
f(x) > 0! E [f ](x; �) < f(x); (2)

and
r
2
f(x) = 0! E [f ](x; �) = f(x) (3)

where r2
f(x) is the Laplacian of f(x). A function g(x)

is concave if 8x0; x1 the line between the points (x0; g(x0))
and (x1; g(x1)) is beneath the function g(x).

For symmetric concave structuring functions g�(x) we
have that for x > 0 and increasing x and for x < 0 and
decreasing x that rg�(x) is decreasing. This implies that
the intercept of a tangent line of g�(x) with the functional
axis is higher for x > 0 and increasing x and for x < 0
and decreasing x, see �gure 3a). The intercept with the
functional axis is known as the Slope transform S[g�](rg�),
as introduced by Dorst and Van den Boomgaard in [5].
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Figure 3: a) Intercept with the functional axis (Slope trans-
form). b) Hit-property of dilation and erosion.

See �gure 3b), if we take � arbitrary small, � ! 0,
we may linearly interpolate function f(x) between points
x0; x1 and x2, as r

2
f(x) < 0 point (x; f(x1)) lies above the

line between points (x0; f(x0)) and (x2; f(x2)). To deter-
mine the dilation and erosion value at x1 we use the hit-
property of dilation and by duality erosion. As rf(xa) =
r� g

�(x1 � xa) = rg�(x1 + xa), rf(xb) = rg�(x1 + xb),
rf(xa) > rf(xb) and S[g

�](rf(xa)) < S[g�](rf(xb)) we
have d0 < d1 setting the extreme sharpening operator value
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Figure 4: a) Blurred version of original picture. b) One
iteration of extreme sharpening operator.

at x1 to the dilation value f(x1) + d0 = f(x1)+S[g
�](rf),

i.e. F
�(x1; �), satisfying property 1. Property 2 is proven

by the duality of the erosion operator.

4.3. Laplacian properties for 2D functions

Considering 2D functions properties 1 and 2 do not hold for
all points x. As r2

f(x) = @
2
f=@x

2+@
2
f=@y

2, r2
f(x) < 0

holds if both @
2
f=@x

2 and @
2
f=@y

2 are smaller than zero.
In this case we have a concave point of f(x) and property 1
still holds. The same is true for property 2 withr2

f(x) > 0
and a convex point of f(x).

If @2f=@x2 and @
2
f=@y

2 do not have the same sign,
e.g. a saddle point, which is not convex nor concave, it also
depends on the gradient values @f=@x and @f=@y whether
the dilation or erosion is chosen as the extreme sharpen-
ing operator value. For example, if we have r2

f(x) < 0,
@
2
f=@x

2
< 0 and @f=@y

2
> 0 we have a point with a local

concavity in x and a local convexity in y. The concavity
in x would imply that the sharpening operator chooses the
dilation value (from x) whereas the convexity in y would
imply that the erosion value (from y) is chosen. The choice
is made on the highest gradient value, giving the lowest
Slope transform value in x or y.

4.4. Sharpening properties

In order to demonstrate the sharpening properties of the
extreme sharpening operator class we construct an analyt-
ical edge model. Let us suppose that the image we wish
to sharpen is the result of passing a black and white pic-
ture through a lens and electronic �lter which have caused
it to become blurred. To retain simplicity in the analysis
we shall deal only with one-dimensional pictures. Let i(x)
be a function, i : x 2 Z 7! i(x) 2 Z of one variable that
represents the sampled version of the original picture. The
blurred version f(x), f : x 2 Z 7! f(x) 2 Z is given by
f(x) = i(x) � h(x) where � is the convolution operator and
h(x) is the point spread function (PSF), h : x 2 Z 7! h(x) 2
Z. Let us assume a symmetrical lens, i.e. h(x) = h(�x)
with �nite aperture, i.e. h(x) = 0 for x < �a and x > a

Moreover h(x) � 0 and is decreasing for increasing and de-
creasing x. For i(x) we take the unity step function:

i(x) =

�
1 : x � 0
0 : x > 0

Note that rf(x) < 0 for x 2 [�a; a] and as h(x) is de-
creasing and symmetric that r2

f(x) < 0 for x 2 [�a; 0),
r2

f(x) > 0 for x 2 (0; a] and r2
f(x) = 0 for x = 0.

The extreme sharpening operator E[f ] will only change
f(x) at points x having r2

f(x) 6= 0. Consider the inter-
val [�a; 0) with points x having r2

f(x) < 0, see �gure 4a).
This interval represents a concave part of the function f(x).
Application of one iteration of the extreme sharpening op-
erator with a concave structuring function g

�(x) on this
interval will result in F

�(x; �) at this interval. Note that
as F�(x; �) > f(x) at this interval (extensivity property of
dilation), that F�(x; �) is also concave (proven in [5]) and
that the interval at which points x having r2

F
�(x; �) < 0,

i.e. [�b; 0), is smaller than the original interval [�a; 0) at
which r2

f(x) < 0. So, repeated applications of the ex-
treme sharpening operator on the interval [�a; 0) are well
de�ned and result in an interval at which all points x have
function values equal to the maximum function value in the
interval [�a; 0).

The same holds for the convex interval (0; a] with points
x having r2

f(x) > 0. In this case, repeated applications
of the extreme sharpening operator result in an interval at
which all points x have function values equal to the mini-
mum function value in the interval.

It can be shown that in case the structuring function
g
� is rotational symmetric the sharpening properties of the
extreme sharpening operator also hold for 2D images.

5. EXTREME SHARPENING OPERATOR:

PARTIAL DIFFERENTIAL EQUATION

In this section we introduce the underlying partial di�eren-
tial equation that governs the extreme sharpening operator
class. Given g(x) is a concave structuring function and
g
�(x) = �g(x

�
) (umbral scaling) we have:

@F
�

@�
= lim

��!0

F
�(x; �+��)� F

�(x; �)

��

1
=

lim
��!0

F
�(x; �)� g

�� � F
�(x; �)

��

2
= lim

��!0

S[g��](rF�)

��

3
=

lim
��!0

��S[g](rF�)

��
= S[g](rF

�
)

and by duality of the dilation operator, that for ��! 0:

@F
	

@�
= �S[g](rF

	
)

where equalities 1 and 3 are proven in [5] and equality 2
is discussed in section 4.2. Using properties 1 and 2 and
without considering saddle points in 2D, as discussed in
section 4.3 this results in the partial di�erential equation
for the extreme sharpening operator:

@E [f ]

@�
= sign[r

2
f ]S[g](rf)

where

sign[f ](x) =

(
1 : f(x) > 0

�1 : f(x) < 0
0 : otherwise

In the remainder of this section we derive the partial deriva-
tive equations of the extreme sharpening operator for the



parabolic structuring functions and the at structuring func-
tions. For parabolic structuring functions g�(x) = � 1

2�
x
2,

g(x) = � 1

2
x
2 and S[g](w) = 1

2
jwj

2
the partial di�erential

equation for the extreme sharpening operator becomes:

@E [f ]

@�
=

sign[r2
f ]jrf j2

2

which is apart from sign[r2
f ] similar to the PDE of the

morphological scale-space [3]: @F
@�

= jrF j
2
. For at struc-

turing functions g�(x), S[g](w) = jwj the partial di�erential
equation for the extreme sharpening operator becomes:

@E [f ]

@�
= sign[r

2
f ]jrf j

In the next section we will look at the use of both structur-
ing functions g�(x) in case of the application of the extreme
sharpening operator in a discrete domain. It will be shown
that applications of the extreme sharpening operator for
small values of � is a numerical di�erence scheme to solve
the partial di�erential equation of the extreme sharpening
operator, in which the stability of the numerical di�erence
scheme depends on the choice of the structuring function,
the type of function values and the minimum value � that
can be set for a structuring function g

�(x) in the discrete
domain.

6. DISCRETE APPROXIMATION AND

EXPERIMENTS

In this section we will present results of applications of
the extreme operator using at structuring functions and
parabolic structuring functions in the discrete domain. In
the discrete domain we consider function values as numbers
given on a grid. We consider two types of function values.
The �rst type is integer function values: for instance, the
grey value range [0; N ], where N typically equals 256. The
second type of function values utilizes a oating point repre-
sentation. Although the second type is still a discrete type
it has advantages over the �rst type at the cost of more
required storage space for sampled function values. We will
show for both types of function values that the choice of a
quadratic structuring function q

�(x) as the g�(x) structur-
ing function for the extreme sharpening operator is favor-
able over a at structuring function.

6.1. Applications of the extreme sharpening oper-

ator

For accurate results of the extreme sharpening operator in
the discrete domain it is necessary to choose the � value
of the corresponding structuring function g

�(x) as small
as possible. Reducing the value of � increases the number
of necessary iterations of the extreme sharpening operator.
The image sharpening can be performed with the applica-
tion of one step of the extreme sharpening operator for a
certain (large) value of � at the cost of losing image details
smaller than the structuring function in the resulting im-
age. We propose the repeated application of the extreme
sharpening operator using a small value for �.

6.2. Integer function values

When we compare the at structuring function c
�(x) with

the parabolic structuring function q
�(x) in the discrete do-

main, where function values are given as integer values on
a grid, we notice that the at structuring function c

�(x)
can only be as small as possible for � = 1. The discrete
approximation of the disc S of the at structuring func-
tion c

�(x) then equals a diamond (4-connected) or a square
(8-connected).

In case of the structuring function q
�(x), � can be as

small as possible: q�(x) is in e�ect an in�nite response �lter.
But in order to have any e�ect on an image it has to have a
minimum value of � = 1. For lower values of � the extreme
sharpening operator will not be able to fully sharpen the
image, only up to a maximum slope.

Figure 5: Applications of the extreme sharpening operator
for 2, 4 and 8 iterations using a 4-connected at structuring
function with � = 1:0.

Figure 6: Applications of the extreme sharpening operator
for 2, 4 and 8 iterations using a 8-connected at structuring
function with � = 1:0.

Figure 7: Applications of the extreme sharpening opera-
tor for 2, 4 and 8 iterations using a parabolic structuring
function q

�(x) with � = 1:0.

In �gures 5, 6 and 7 we have depicted the results of
the application of the extreme sharpening operator for dif-
ferent numbers of iterations and di�erent structuring func-
tions g�(x) in case of integer function values. The original
image is a digitized 2D Gauss function. The desired re-
sult of the application of the extreme sharpening operator
should be a cylinder. From the results we may conclude that
sharpening with a parabolic structuring function q

�(x) re-
sembles the desired result better then when a 4-connected
or 8-connected at structuring function is used. This stems
from the fact that the discrete approximation of a parabolic
structuring function q

�(x) is more isotropic then the dis-
crete approximation of the disc S of the 4-connected and



8-connected at structuring function. But still, the discrete
integer valued approximation of q�(x) contains (repeating)
discretization errors, as noted in [6], which will inuence the
correctness of the extreme sharpening operator and the sta-
bility of the sharpening result after several iterations of the
extreme sharpening operator, which can be seen in �gure 7.

6.3. Floating point function values

In case of oating point function values given on a grid,
the � value for the parabolic structuring functions can even
be lower than 1 (down to �), which is determined by the
oating point precision. The minimal value of � for at
structuring functions remains 1.

Figure 8: Applications of the extreme sharpening operator
for 2, 4 and 8 iterations using a 4-connected at structuring
function with � = 1:0.

Figure 9: Applications of the extreme sharpening operator
for 2, 4 and 8 iterations using a 8-connected at structuring
function with � = 1:0.

Figure 10: Applications of the extreme sharpening opera-
tor for 2, 4 and 8 iterations using a parabolic structuring
function q

�(x) with � = 0:2.

In �gures 8, 9 and 10 we have depicted the results of
the application of the extreme sharpening operator for dif-
ferent numbers of iterations and di�erent structuring func-
tions g

�(x) in case of oating point function values. The
original image is again a digitized 2D Gauss function and
consequently the desired result of the application of the ex-
treme sharpening operator should be a cylinder. From the
results we may conclude that sharpening with a parabolic
structuring function q

�(x) correctly yields the desired re-
sult: a cylinder, whereas the sharpening with a 4-connected
or 8-connected at structuring function gives cubic-like �g-
ures. Again due to the anisotropic behavior.

6.4. Continuous approximation

In the discrete case the � of both the parabolic structur-
ing functions and at structuring functions has a minimum
bound to ensure any sharpening e�ect. Further research
should indicate whether it is possible to use the 1D union-

of-translations implementation of dilation with a parabolic
structuring function as described in [4] to come up with
an implementation of the extreme sharpening operator in
which case we can choose � arbitrary small.

7. CONCLUSIONS

We have introduced a class of morphological operators with
applications to sharpen digitized grey value images. We
have de�ned the extreme sharpening operator class in terms
of the grey value dilation and erosion operator from math-
ematical morphology and derived the partial di�erential
equation (PDE) that governs this class of operators. Fur-
thermore, we have shown the sharpening properties of this
class of operators given an analytical 1D edge model. We
have focused on two instances of this class of operators:
one utilizing a at structuring function and one using a
parabolic structuring function. We have shown with ex-
periments in the discrete domain for two types of function
values, integer and oating point, that the use of a parabolic
structuring function is favorable over a at structuring func-
tion in terms of algorithm complexity and isotropic sharp-
ening behavior.
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