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ABSTRACT

In this paper we introduce parametric binary Rademacher
functions of two types. Based on them using di�erent kinds
of arithmetical and logical operations we generate a set of
binary polynomial transforms (BPT). Some applications of
BPT in nonlinear �ltering and in compression of binary
images are presented.

1. INTRODUCTION

Spectral analysis is a powerful tool in communication, sig-
nal/ image processing and applied mathematics and there
are many reasons behind the usefulness of spectral analysis.
First, in many applications it is convenient to transform a
problem into another, easier problem; the spectral domain
is essentially a steady-state viewpoint; this not only gives
insight for analysis but also for design. Second, and more
important: the spectral approach allows us to treat entire
classes of signals which have similar properties in the spec-
tral domain; it has excellent properties such as fast algo-
rithms, high energy compaction property of the transform
data.

However, there are some problems in signal/ image pro-
cessing (especially if the input data is binary) where they
cannot be applied directly.

We may properly ask what is a basic transform for bi-
nary signal/image processing which plays the same role for
it as spectral transform for linear processing.

Similarly we may ask what is a basic transform for non-
linear signal/image processing which plays the same role for
it as spectral transform for linear processing.

We will develop a compact representation of signals for
later use in digital logic and nonlinear signal analysis. Our
approach will be based on introduction of parametric bi-
nary Rademacher functions (BRF); on generating a set of
transforms using Rademacher functions and di�erent kinds
of arithmetical and logical operations. Emphasis is placed
on the two classes of transforms, introduced in this paper:
transforms generated by BRFs using only one operation
(arithmetical or logical) and transforms generated by BRFs
using two operations (arithmetical or logical). We present
the basic properties of these transforms.

This development is motivated also by potential appli-
cations in areas such as nonlinear signal/image processing,
construction of new architectures of signal/image process-

ing computers or systems suitable for simultaneous arith-
metical or logical operations.

2. BINARY POLYNOMIAL FUNCTIONS AND

MATRICES

2.1. Rademacher Functions and Matrices

Let a and b be arbitrary integers. We form the classes
rn(t; a; b) and sn(t; a; b) of real periodic functions in the
following way. Let

r0(t; a; b) � s0(t; a; b) � 1; (1)

rn+1(t; a; b) =

(
a; for t 2

S2n�1

m=0
[ m
2n
; m
2n

+ 1

2n+1
);

b; for t 2
S2n�1

m=0
[ m
2n

+ 1

2n+1
; m+1

2n
):

(2)
and

sn+1(t; a; b) =

(
a; for t 2 [0; 1

2n+1
);

b; for t 2 [ 1

2n+1
; 1
2n
)

0; otherwise for t 2 [0; 1);

n = 0; 1; 2; :::

(3)
Note that

r1(t; a; b) = s1(t; a; b) =

�
a; for t 2 [0; 1

2
);

b; for t 2 [ 1
2
; 1)

:

DEFINITION 2.1 : The functions rn(t; a; b) are called
Rademacher (a; b)-functions of I-type. The functions
sn(t; a; b) are called Rademacher (a; b)-functions of II-type.

Note that when a = 1 and b = �1; the Rademacher
(a; b)-functions of I-type coincide with the Rademacher func-
tions [5]. Let us consider some properties of the generalized
Rademacher functions de�ned above.

PROPERTY 2.1 : There are the following representa-
tions of the Rademacher (a; b)-functions of the I-type:

1) rn+1(t; a; b) = a+ (b� a)cn+1(t); t 2 [0;1); (4)

where cn+1 are the coe�cients from

t =

1X
n=1

cn(t)2
�n

=

1X
n=1

cn2
�n

: (5)



2) rn(t; a; b) =
1

2

h
(a� b)sgn [sin(2

n
�t)] + a+ b

i
;

t 6=
k

2n
; k = 0; :::;2

n�1
; sgn (y) =

n
1; if y > 0;
�1; if y < 0:

3) There is the following representation of the
Rademacher functions of II-type:

sn+1(t; a; b) = [a+ (b� a)cn+1(t)]

nY
i=1

ci(t): (6)

4) There is the following relation between the Rademacher
(a; b)-functions of I-type and II-type:

rn+1(t; a; b) =

2n�1�1X
m=0

sn+1(t�
m

2n�1
; a; b): (7)

For a natural number n and integers a and b we de�ne the
following discrete functions:

R
(n)

k (x; a; b) = rk(
2x+ 1

2n+1
; a; b); (8)

k = 0; 1; :::;n� 1; x = 0; 1; :::;2n � 1; n � 0:

S
(n)

k (x;a; b) = sk(
2x+ 1

2n+1
; a; b); (9)

k = 0; 1; :::;n� 1; x = 0; 1; :::;2n � 1; n � 0:

DEFINITION 2.2 : The rectangular (2n � (n + 1))

matrix R(n; a; b); whose (x;k)th element is R
(n)

k (x; a; b),
x = 0; 1; � � � ; 2n�1, k = 0; � � � ; n, is called Rademacher (a; b)
matrix of I-type (of order n). The rectangular (2n � (n+1))

matrix S(n; a; b); whose (x;k)th element is S
(n)

k (x; a; b), x =
0; 1; � � � ; 2n�1, k = 0; � � � ; n, is called the Rademacher (a; b)
matrix of II-type (of order n).

REMARK 2.1: For each pair of integers (n; k), n > 0,
1 � k � n, the kth column of R(n; a; b) de�nes a func-
tion f0; 1; � � � ; 2n � 1g ! fa; bg. This set of functions is
called the system of discrete Rademacher (a; b) functions of
I-type. Analogously, for each pair of integers (n; k), n > 0,
1 � k � n, the kth column of S(n; a; b) de�nes a function
f0; 1; � � � ; 2n�1g ! fa; bg; the system of which is called the
system of discrete Rademacher (a; b) functions of II-type.

EXAMPLE 2.1 : When n = 4; the Rademacher (a; b)-
matrices of I-type RT (4; a; b) and II-type ST (4; a; b) have
the following forms, respectively:0
BB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a a a a a a a a b b b b b b b b

a a a a b b b b a a a a b b b b

a a b b a a b b a a b b a a b b

a b a b a b a b a b a b a b a b

1
CCA

0
BB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a a a a a a a a b b b b b b b b

a a a a b b b b 0 0 0 0 0 0 0 0
a a b b 0 0 0 0 0 0 0 0 0 0 0 0
a b 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
CCA

where T denotes matrix transposition.

The discrete Rademacher (a; b)-matrices of I-type and
II-type have the following properties.

PROPERTY 2.2:

1) R
(n)

k
(x;a; b) = a+ (b� a) � xk(x); k = 1; :::;n;

where n is a natural number, and x, 0 � x � 2n � 1 is
written in the form

x =

n�1X
j=0

xj(x) � 2
n�j�1

; j = 0; 1; :::;n� 1: (10)

2) RT (n; a; b) �R(n; a; b) = 2n�2[(a� b)2 � I(n) + (a +

b)2 � J(n)];
where I(n) is the identity matrix of order n and J(n) is the
(n� n) matrix whose all entries are equal to 1:

In particular, for the classic Rademacher matrices

R
T (n; 1;�1) �R(n; 1;�1) = 2n � I(n):

3) Let n be a natural number, 1 � k � n and suppose that
x, 0 � x � 2n � 1 is written in the form (10). Then

S
(n)

k (x;a; b) = [a+(b�a) �xk(x)]

k�1Y
i=0

[1�xi(x)]; k = 1; :::;n:

(11)

4) ST (n; a; b)�S(n; a; b) = a(a+b)�[J(n)+
Pn�2

i=1
2iP

(i)

(n)
]

+b(b� a) �D(n);

where J(n) is the (n � n) matrix whose all the entries are

equal to 1; P
(i)

(n)
is the (n� n) matrix whose leftmost (n�

i)� (n� i) submatrix is J(n�i); i = 1; :::;n� 2; and

D(n) = diag(2n�1; 2n�2; :::;2; 1):

2.2. (a; b; �)-Polynomial Functions of I-Type

Let � be an arbitrary associative arithmetical or logical op-
eration, (m0;m1; :::; mn�1) be the binary representation

of an integer m =
Pn�1

i=0
mi2

n�1�i; 0 � m � 2n � 1. Let
also H
G be the Kronecker product of the matrix H and
the matrix G; and H
n be the Kronecker nth power of the
matrix H; i.e. H
n = H
H
 :::
H| {z }

n times

.

We form a class of functions �
(n)
m (x;a; b; �) from the

system of discrete Rademacher (a; b)-functions of I type (i.e.

from fR
(n)
m (x; a; b)gn�1m=0) in the following way. Let

�
(n)
m (x; a; b; �) = �

(n)
m0;m1 ;:::;mn�1

(x; a; b; �)

= [R
(n)

0 (x; a; b)]
m0

� � � � � [R
(n)

n�1(x; a; b)]
mn�1

; (12)

where � is an arithmetical or logical operation. If � is a
logical operation, then we naturally assume a; b 2 f0; 1g.

DEFINITION 2.3: The functions �
(n)
m (x; a; b; �); m =

0; :::;n� 1, are called (a; b; �)-polynomial functions. If � is
an arithmetical (logical) operation, the (a; b; �)-polynomial
functions are called arithmetical (logical).



DEFINITION 2.4 : The square matrix �(n; a; b; �) =

[�
(n)
m (x; a; b; �)]; x;m= 0; 1; :::; 2n�1; which has as columns

the (a; b; �)-polynomial functions, is called the (a; b; �)- poly-
nomial matrix.

Let � be multiplication operation. The (a; b;�)-polynomial

functions �
(n)
m are formed via Rademacher (a; b)-functions

R
(n)
m (x;a; b;�) by the following formula:

�
(n)
m (x; a; b;�) =

n�1Y
i=0

[R
(n)

i (x; a; b)]mi ;

where mi is the ith bit in the binary representation of m
via m =

Pn�1

i=0
mi2

n�1�i:

When a = 1; b = �1; the (a; b)-polynomial functions
coincide with the Walsh functions, and when a = 0; b = 1;
they coincide with the Reed-Muller (conjunctive) functions
[1].

Based on Property 2.2, 1) we have the following expres-
sions:

�
(n)
m (x;1;�1) =

n�1Y
i=0

(1� 2xi)
mi ; (13)

for the Walsh functions, and

�
(n)
m (x; 0; 1) =

n�1Y
i=0

x
mi

i ; (14)

for the conjunctive functions.
Let now � be an arbitrary associative binary logical op-

eration, a = 0 and b = 1: Let m and x have binary repre-
sentations (m0; � � � ;mn�1) and (x0; � � � ; xn�1) respectively.
Then, by Property 2.2, the formula (12) becomes

�
(n)
m (x; 0; 1; �) = �

(n)
m0;:::;mn�1

(x; 0; 1; �) = �
n�1
i=0 x

mi

i :

Examples of the � -polynomial logical functions are:
a) conjunctive, if � is the operation ^ (AND); denoted

by �
(n)
m (x;^);
b) disjunctive, if � is the operation _ (OR); denoted by

�
(n)
m (x;_);
c) antivalent, if � is the operation � (XOR); denoted

by �
(n)
m (x;�):

2.3. (a; b)-Polynomial Functions of II-type

First de�ne the shifted Rademacher (a; b)-functions of II-
type, namely

s
(k)
m (x; a; b) = s

(k)(x�
m

2k
; a; b); (15)

where m 2 f0; 1; :::;2k � 1g:

DEFINITION 2.5: The functions h
(n)

0 (x; a; b)

= s(0)(x;a; b); h
(n)

1 (x; a; b) = s(1)(x; a; b); and h
(n)

2k+m
(x; a; b)

= s
(k+1)
m (x; a; b); m = 0; 1; :::;2k � 1; k = 1; :::;n � 1; are

called (a; b)-polynomial functions of II-type, and they form
the system of (a; b)-polynomial functions of II-type.

DEFINITION 2.6: The square matrix H(n; a; b)

= [h
(n)
r (x; a; b)]; x; r = 0; 1; :::; 2n�1; which has as columns

the (a; b)-polynomial functions of II-type, is called the (a; b)-
polynomial matrix of II-type.

Note that the classical Haar functions (matrices) are the
particular case of the (a; b)-polynomial functions (matrices)
of II-type where a = 1; b = �1. The Haar-conjunctive func-
tions (matrices) will be (0; 1)-polynomial functions (matri-
ces) of II type.

EXAMPLE 2.2: The Haar-conjunctive H3 matrix is:

H3 =

2
66666664

1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 0 1 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 1 0
1 1 0 1 0 0 0 0
1 1 0 1 0 0 0 1

3
77777775
:

3. BINARY POLYNOMIAL TRANSFORMS

3.1. (a; b)-Polynomial Transforms of II-type as Bi-
nary Wavelet Transforms

Binary Wavelet Transform emerged from the application of
wavelet theory in �nite �eld with two elementsGF(2) [4, 7].
It is highly advantageous in computational point of view,
since the computations are performed by "exclusive or" and
"and" operations. Although smoothness and vanishing mo-
ments properties of real discrete wavelet transforms [9] do
not make sense in GF(2), BWT is useful to localize data in
time and frequency and separately encode rapid and slow
changes across the data. In that sense, an example for a
one stage BWT is de�ned as

BWT =

�
I 0

0 I

��
I 0

I I

�
L (16)

in [4], where L is a permutation matrix called "lazy wavelet
transform" such that L(x1; x2; : : :) = [x2; x4; : : : ; x1; x3; : : :].
Wavelet vectors resulting from (16) are exactly the same as
the columns of Haar-conjunctive matrix ((0; 1)-Polynomial
Matrix of II-type) introduced in the previous Section.

3.2. (a; b)-Polynomial Functions of I-type as Dis-

crete Wavelet Packet Transforms

Wavelet packet transform is a generalization of wavelet trans-
form which o�ers a wider range of analysis possibilities for
the signal [9]. It is associated with a best basis selec-
tion algorithm which selects a subdecomposition structure
among all possible decomposition structures presented by
the packet transform, subject to a criterion. Wavelet Packet
Transform can be better visualized by a full binary tree,
where left and right branchings represent lowpass and high-
pass �lterings, respectively, and best basis selection corre-
sponds to extracting a subtree of the binary tree.

Consider the Walsh matrixWn of order n in Hadamard
ordering. It corresponds to a Wavelet Packet Transform



with [1 1] and [1 �1] being the lowpass and highpass �lters,
respectively. The conjunctive matrix Kn of order n is also
a wavelet packet transform in GF(2) with [1 0] and [1 1]
acting as the lowpass and highpass �lters, respectively.

3.3. E�cient computation algorithms

3.3.1. Fast (0,1)-Rademacher Transforms of I-type

LEMMA 3.1: The (0; 1)-Rademacher matrix Rn =
R(n; 0; 1) of I-type can be represented as

Rn =

n�1Y
j=0

R
(j)
n ; (17)

where

R
(0)
n =

�
In�1 0n�1
In�1 1n�1

�
; (18)

R
(j)
n =

 
In�1�j 0n�1 0
In�1�j 1n�1 0

0 0 I(j)

!
; j = 1; 2; :::;n� 2; (19)

R
(n�1)
n =

0
BBB@
1 0 � � � 0
1
0
... I(n)
0

1
CCCA ; (20)

Ij (respectively, I(j)) is the identity matrix of order 2j

(respectively, of order j), I(n) is an opposite identity matrix
of order n; 0j (respectively, 1j) are column-vectors of
length 2j ; consisting of zeros (respectively, of ones).

3.3.2. Fast (a; b;�)-Polynomial Transforms of I-Type

LEMMA 3.2 : The (a; b;�)-polynomial matrices �n =
�(n; a; b;�) can be expressed by the following formula:

�n = (Gn)
n
; (21)

where

Gn =

0
BBBBBBBB@

1 a 0 0 : : : 0 0
0 0 1 a : : : 0 0

: : : : : : : : : : : :

0 0 0 0 : : : 1 a

1 b 0 0 : : : 0 0
0 0 1 b : : : 0 0

: : : : : : : : : : : :

0 0 0 0 : : : 1 b

1
CCCCCCCCA

(22)

3.3.3. Fast (a; b)-Polynomial Transforms of II-Type

LEMMA 3.3: The (a; b)-polynomial matrices of II-type
Hn = H(n; a; b) can be expressed by the following formula:

Hn =Gn

n�1Y
j=1

diag(Gn�j ; Ij; :::;In�1); (23)

where

Gk = [Ik�1 

�
1
1

�
Ik�1 


�
a

b

�
]; (24)

where

H1 = G1 =
�
1 a

1 b

�
and Ir is the identity matrix of order 2r:

4. BINARY POLYNOMIAL TRANSFORMS IN

NONLINEAR FILTERING

The use of BPT in nonlinear �ltering was discussed in de-
tails in [1]. Here we just show very simple and very ef-
�cient realization for a threshold �lter [3]. The threshold
�lter (TF) Sf (X) based on the M -variable discrete func-
tion f(�) : f0; 1gM ! < maps the signal X into the output
signal Y = fY (k); k = 1; 2; :::;Lg; where

Y (k) = Sf (X(k)) =

RX
n=1

f(�n(X(k))); (25)

�n(:) is the vectoral threshold function with the elements

de�ned by �n(X) =
n
1 if X � n

0 otherwise.
Denote xj = �j(X)); j = 1; :::;M: De�ne an indicator

�(xj) = [�0(xj); :::;�2N�1(xj)]; j = 1; :::;M; (26)

where

�k(xj) =
n
1; if (kN�1; :::; k0) = xj ;

0; otherwise,
(27)

j = 1; :::;M ; (kN�1; :::; k0) is the binary vector represen-
tation of the positive integer k; k = 0; :::;2N � 1:

Denote by h the histogram vector of xj ; j = 1; :::;M;

i.e.

h =

MX
j=1

�(xj): (28)

The matrix analogue of the formula (25) is the following
(index n is omitted)

y = f � h
T
; (29)

where hT is the transposed vector of the histogram vector
h (28). Let us now modify (29) to the form

y = h �H � g
T
; (30)

with
g
T
= H

�1
� f ; (31)

where H is any nonsingular matrix. In fact, realization of
threshold �lter in [3] follows directly from (30)-(31) when
H = K is the conjunctive (Reed-Muller) matrix. Nev-
ertheless, there exists much simpler and e�cient realiza-
tion of this �lter using Rademacher-sorting network without
computation of the threshold histogram h: The owchart
structure of Rademacher-sorting network is similar to the
owchart of the fast Rademacher transform, with changing
of addition operations to minimum operations.



5. BINARY POLYNOMIAL TRANSFORMS IN

COMPRESSION OF BINARY IMAGES

Binary image compression may �nd applications in com-
pressing bi-level high resolution images such as fax pages,
scanned images or segmentation data and bit-plane by bit-
plane compression of multi-level images in some speci�c
cases. Recently, multiresolution analysis via wavelet trans-
form has found e�cient applications in multilevel image
compression ( [9]). The success of multilevel image com-
pression with wavelets has been followed by applications of
wavelet theory over the �nite �eld GF(2) ( [4, 7]). Swanson
and Tew�k developed a theory of binary wavelet transform
in terms of two band perfect reconstruction �lter banks in
( [7]). Their test results with binary image compression
achieved promising results in terms of �rst order entropy.
Soon after Johnston ( [4]) used another approach (lifting
scheme ( [8])) to construct a binary wavelet transform which
is a cascade of binary matrices composed of upper and lower
unimodular binary blocks and a simple permutation matrix
collecting even samples to upper half and odd samples to
lower half (see (16)). Here we will present how to obtain
similar binary transforms via binary polynomial matrices.

Consider the Reed-Muller matrix KM of order M

KM = K

M
1 =

�
1 0
1 1

�
M
(32)

and a binary vector fM of length 2M . The Reed-Muller
Transform of fM can be de�ned as

fRM = KMfM ;

where the output fRM is computed in modulo 2 arithmetic.
fRM corresponds to a wavelet packet representation of fM
which can be obtained by a full wavelet tree decomposi-
tion. In this decomposition �rst and second rows of K1

act as lowpass and highpass �lters, respectively. The above
transform can be generalized into two-dimensional case for
images as

FRM =KMF
T
K

T
M ; (33)

where F is a binary matrix representing pixel values of a bi-
nary image. Note that (33) is an invertible transform where
the inverse ofKM in GF(2) is equal to itself. We can obtain
the best multiresolution decomposition of F, by selecting a
sub-decomposition structure covered by KM : The subde-
composition structure can be obtained by forming a matrix
such that

K
0
M =

�
A 0M�1

B C

�
; (34)

where 0M�1 is the zero matrix with size 2M�1�2M�1, and
A, B, C can be either 0M�1 or K

0
M�1 with the restriction

that
K
0
1 =K1:

Some quantitative results of the above binary transform
are presented in Table 1. For all four test images, the log-
arithmically growing decomposition tree is found to give
the best performance in terms of minimum number of ze-
ros. Hence, the only overhead information needed is the
depth of the tree. For comparison, the results of S and S&P
Transform [6] are also included. Although S and S&P are

Table 1: Compression results for thresholded 256 � 256
Lena, 128 � 128 Ball, 128 � 128 Bird and 512 � 512 Text
images

org. Lenna S&P S BT

no.nonzero 26924 3940 3688 4251

Entropy 0.98 0.39 0.37 0.34

org.Bird S S&P BT

no.nonzero 12940 843 747 730

Entropy 0.74 0.35 0.32 0.26

org. Ball S&P S BT

no.nonzero 56715 1727 1599 1531

Entropy 0.75 0.06 0.06 0.05

org. Text S S&P BT

no.nonzero 3174 366 318 399

Entropy 0.71 0.19 0.17 0.16

real wavelet transforms for lossy and lossless compression,
they is also suitable for binary image compression because
they produce integer outputs in a very limited range for
binary data. The proposed binary transform performs bet-
ter than both S and S&P in terms of �rst order entropy of
transformed coe�cients. It satis�es signi�cant reduction of
entropy from the original image.
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