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ABSTRACT

Under the generalized smoothing of a signal, a wider

class of operations is understood than the plain sup-

pression of noise. We apply this term to all the process-

ing problems which can be interpreted as those of trans-

formation of the original signal, considered as functions

of one discrete argument, into a secondary function of

another nature on the same carrier, by way of coor-

dinating the local signal-dependent information and a

piori smoothness constraints. In this work, a statistical

approach to the generalized edge-preserving smoothing

is considered on the basis of treating the sought-for re-

sult of processing as a realization of a Markov random

process, whose Markov continuity is locally broken at

the assumed jump-points. The principal idea of the ap-

proach consists in �nding the break-points one by one

and incorporating them into the model of the hidden

process as they are found, so that, at each step, the

most detectable of not yet legitimated peculiarities is

sought for.

1. INTRODUCTION

The problem of edge-preserving smoothing is typical for

practice of signal analysis. It constantly arises when

there is reason to believe that signi�cant discontinu-

ities of the hidden original signal are disguised by noise

in the data array accessible to immediate processing.

An edge-preserving smoothing algorithm is inevitably

nonlinear, even if the basic smoothing procedure is lin-

ear. Many nonlinear smoothing techniques are known

to date, among which the leading place occupy, per-

haps, median �lters [1], and new techniques based on

competitive Kalman smoothing [2].

Despite the great number of edge-preserving

smoothing techniques, all of them are underlaid by the

tacit assumption that any two neighboring edges sub-

ject to detection are spaced at a distance not smaller
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than the minimal e�ective width of the window suf-

�cient for achieving the desired smoothing degree. If

this assumption is broken, the smoothing algorithmwill

take two adjacent jumps in the signal for an entire noise

pattern and try to suppress them.

However, it is often required to distinguish between

closely-spaced peculiarities of the original signal, in-

cluding salient short pulses, without loss in smooth-

ing degree around them. It is just this problem which

roused the authors to seek for alternative ways of pre-

serving discontinuities in signals to be smoothed. The

principal idea of the approach being discussed here con-

sists in �nding break-points one by one and incorporat-

ing them into the model of the hidden process, as they

are found, so that at each step the most detectable of

not yet legitimated peculiarities is sought for.

In many practical problems of signal analysis, it

is expedient to treat the result of a processing of the

original signal Y = (yt; t 2 T ), T = f1; : : : ; Ng, more

widely than the result of smoothing proper, namely, to

interpret it as a succession of estimates x̂t on the in-

stantaneous vector parameter xt 2 R
n of an appropri-

ate local signal model of general kind. In this case, the

entire totality of results should be considered as series

of mutually coordinated estimates X̂ = (x̂t ; t 2 T ),

smoothed in a general sense with preserving relatively

rare abrupt jumps.

Just like in [3], we use here the statistical approach

to the generalized smoothing with the outlook of ex-

tending it onto the case of images. To be exact, we use

the version based on the notion of a Markov model of

the hidden signal. It is, in particular, just this approach

which underlies the very idea of Kalman �ltration and

smoothing, therefore, the algorithms described in [2]

are immediate progenitors of more general procedures

considered in this work.

In Section 2, we start with the presentation of a ba-

sic procedure of generalized edge-preserving smooth-

ing. In Sections 3 and 4, we consider two particular

versions of the basic procedure designed, respectively,

for smoothing proper with preserving eventual breaks



as in the signal itself as well as in its �rst di�erence,

and for autoregression and time-frequency analysis of

signals with abruptly changing spectral properties.

2. GENERALIZED BASIC PROCEDURE

Just as it is widely adopted, we consider the succession

to be recovered X = (xt ; t 2 T ), xt = (x1t ; : : : ; x
n

t
)T 2

R
n , and the original signal Y = (yt; t 2 T ) as real-

izations of, respectively, the hidden X and the observ-

able Y component of a two-component random process

(X ;Y). It is required to estimate the realization of the

hidden process from the observed realization X̂(Y ).

The marginal probabilistic properties of the process

X are assumed to be expressed in Markov terms as

conditional normal probability densities

qmt (xjxt�1;vt)=N (xjAxt�1;Vt); Vt=Diag(vt ); (1)

with the upper index "m" meant as model-based. The

matrix coe�cient A in the conditional mathematical

expectation Axt�1 and the constant diagonal covari-

ance matrix Vt = V = Diag(v) with su�ciently small

variances vt = v = (v1 ; : : : ; vn)T = const express

the a priori smoothness constraints which are valid

beyond the isolated jump-points: the less vi is, the

more smooth the component xit is expected to be. At

the points of the assumed jumps, some of the diagonal

variances in Vt = Diag(vt ) get in�nite for an instant

vit !1, and cut o�, in the respective direction in Rn ,

the future of the hidden process (xs ; s � t) from its

past (xs ; s < t).

Let the functionW=(vt ; t2T), vt=(v1t ; : : : ; v
n

t )
T ,

where at each time moment vit = vi � 0 or vit =1, be

called edge function.

As to the conditional probabilistic properties of the

observable process (YjX ), there is no need to preset

them in any explicit form. It is su�cient to assume

that there is a way, maybe, a heuristic one, to roughly

judge about each of the single hidden values xt from a

fragment Yt of the original signal around point t, in par-

ticular, from its single value yt. Such local judgments

are assumed to be expressed in the form of an instanta-

neous signal-dependent normal posterior distributions

pot (xjYt) = N (xjx̂o
t
; Ro

t
); (2)

where the observation-based a posteriori mathemati-

cal expectations x̂o
t
= x̂o

t
(Yt) and covariance matrices

Ro
t = Ro

t (Yt) are interpreted, respectively, as initial

local estimates and their incredibility measures.

Thus, if we knew the edge function W = (vt ; t 2

T ), i.e. the locations and directions of jumps, the prob-

lem of edge-preserving smoothing would reduce itself

to that of �nding, at each time moment t, an esti-

mate of the Markov hidden process, for instance, the

posterior mathematical expectation x̂t = x̂t(Y ;W) =

M(xt jY ;W) with respect to the entire signal record Y .

Under the normality assumptions (1) and (2), the result

of such a generalized smoothing X̂ = (x̂t ; t 2 T ) will

be result of a linear operation on the succession of the

initial local estimates X̂o = (x̂o
t
; t 2 T ) performed by

the usual Kalman �ltration-interpolation procedure [4].

The �nal result of interpolation at each point t of

the discrete time interval T = f1; : : : ; Ng can be shown

to be representable as linear combination

x̂t=Rt

h
(ARl

t�1A
T+Vt)

�1Ax̂l
t�1+(R

r
t
)�1x̂r

t

i
;

Rt =
h
(ARl

t�1A
T+Vt )

�1 + (Rr
t
)�1

i�1
;

(3)

where

x̂lt�1 = M(xt�1jy1; : : : ; yt�1;W);

Rl
t�1 = Cov(xt�1jy1; : : : ; yt�1;W);

(4)

and
x̂rt = M(xt jyt; : : : ; yN ;W);

Rl

t
= Cov(xt jyt; : : : ; yN ;W)

(5)

are posterior mathematical expectations and covari-

ance matrices of the hidden process values found at

two neighbouring points t � 1 and t by two indepen-

dent Kalman �lters running, respectively, from the left

t = 1; : : : ; N and from the right t = N; : : : ; 1. At the

moments of jumps already legitimated in W, the in�-

nite diagonal elements ofVt prevent, at least, partially,

the averaging of the respective estimates in (3).

It should be borne in mind that the hidden model

(1) must be inverted in time before using it in

the backward Kalman �lter (5): qmt (xjxt+1;vt+1) =

N (xjA�1xt+1;Vt+1).

But the positions and directions of jumps are un-

known in the general case and subject to an estimation

along with the realization of the hidden process. In this

work, a multistage procedure of estimating the edge

function is proposed on the basis of the idea to seek, at

each step of signal processing, for only one jump in the

hidden signal. Let the edge functionW = (vt ; t 2 T )

be known up to the only last jump which still remains

to be found. Let us, sequentially for all the points of

the discrete time interval T = f1; : : : ; Ng, test the hy-

pothesis that the current point t is just the sough-for

remaining jump-point, i.e. that the di�erence ût =

x̂rt � Ax̂
l

t�1 between the left-side Ax̂l
t�1 and right-

side x̂rt estimates on the same hidden random value xt
is too large to be referred to the legitimate stochasticity

of the hidden model in accordance withW.

If we assume that no a priori information on the

random di�erence ut = xt �Axt�1 is available, its a



posteriori probability distribution will be normal with

mathematical expectation ût = xr
t
� Ax

l

t�1 and co-

variance matrix Qt = AR
l

t�1A
T + Vt + Rr

t
de�ned

by (4) and (5). On the other hand, such an a priori

information exists and is carried jointly by the hidden

model (1) and the jump function W, which prescribe

the di�erence ut to be a random vector with zero math-

ematical expectation and covariance matrix Vt .

The ratios zit = (ûit)
2=qiit of the squared elements of

ût to their variances in Qt appear to be appropriate

measures of the local "strain" in the respective compo-

nents x̂it of the estimated hidden signal when the model

is attempting to adjust them without jump at the cur-

rent point. The most "stressed" point, if the maximal

ratio exceeds a preset threshold,

t� = arg max
1�t�N

zt; zt = max
i=1;:::;n

zit; zt� > h; (6)

is to be pronounced the new jump-point. Mark, that

this may happen only at a time moment t where no

jump had been found at the previous stages of pro-

cessing, and, so, the covariance matrix Vt in W is

still matrix V = Diag(v) with small diagonal elements

v = (v1; : : : ; vn)T which preset the normal smooth-

ness degree of the hidden process. This matrix is to

be replaced by a matrix Vt� with one or several in�-

nite diagonal elements to mark the components of xt
which must be broken. The choice of such components

depends on the particular hidden model.

The procedure starts with the initial edge function

W = (Vt =V=Diag(v); t 2T) which presupposes no

jumps in the signal, and is to be repeated again and

again, each time with the renewed W, while the most

stressed point of T satis�es the condition (6).

In contrast to [2], where at each point only one

of two independent estimates (4) and (5) is taken as

the result of smoothing, the approach described here

should be called rather collaborative than competitive,

because at the most part of points, where no jumps

are detected, both of the �ltration results participate

in forming the �nal decision on the hidden signal value.

As a result, the presented approach provides more pro-

nounced edge-preserving e�ect, but the necessity to de-

tect jumps in an explicit form is the inevitable payment

for such an improvement. Since the plain comparison

of two estimates at each point provides for an accu-

rate �nding of only one eventual jump in the hidden

process, we are forced to use a multistage procedure.

Fortunately, there is an e�ective way to signi�cantly

accelerate the procedure without any appreciable loss

in the accuracy of estimating the locations of jumps.

This way consists in �nding, at each stage of process-

ing, several su�ciently distant local maxima of the es-

timated strain zt at once, instead of only one point

t� of the absolutely maximum strain (6). As the new

legitimate jumps, all the points t� are pronounced at

which zt achieves its absolute maximumsimultaneously

in two adjacent intervals of a preset length � at the left

and at the right of the current point:

t� = arg max
(t���)�t�(t�+�)

zt; zt� > h: (7)

As it will be illustrated in the next Section, such a

procedure is able to �nd jump-points located closer to

each other than � , but it detects them sequentially,

at di�erent stages of signal processing.

3. EDGE-PRESERVING SUPPRESSION

OF NOISE

In this Section, we consider the original signal yt as sum

yt = xt + �t of a hidden signal xt to be recovered and

additive white noise �t with zero mean and a supposed

variance w. The aim of processing is suppression of the

noise with respect to the assumed smoothness of the

hidden signal almost everywhere except some isolated

points where jump-like discontinuities may occur in the

signal itself xt and (or) in its di�erences r
jxt up to the

preset highest order j = 1; : : : ; k.

We keep here to the approach depicted in [2], where

the supposed smoothness of the hidden signal is ex-

pressed by the assumption that all the di�erences of

the hidden signal equal zero rjxt = 0, j = 1; : : : ; k�1,

except that of the highest order k which is dealt with as

white noise rkxt = �t with variance v taken essentially

smaller than that of the noise in observation v � w.

In accordance with such an approach, it is natural

to take the hidden process in the generalized model (1)

as vector xt = (x1t ; : : : ; x
n
t )

T 2 Rn , n = k + 1, whose

elements are the hidden signal itself x1t = xt and its

di�erences xit = ri�1xt, i = 2; : : : ; n, so that x1t =

x1t�1 + x2t�1; : : : ; x
n�1
t = xn�1t�1 + xnt�1; x

n
t = xnt�1 + �t.

In this work, we restrict our consideration, for the

sake of simplicity only, to the �rst-order model of the

hidden signal. It means that the hidden process is as-

sumed to take values from the two-dimensional space

formed by the signal itself and its �rst di�erence xt =

(xt ; 5xt)
T 2 R2. In this case, matricesA andVt in (1)

will have the form

A =

�
1 1

0 1

�
; Vt =

�
v1t 0

0 v2
t

�
= Diag(vt ); (8)

where parameter values v1t = 0 and v2t = v express the

smoothness assumption on the hidden signal xt = x1t
beyond the jumps. As to the jump-points, the �rst-

order model allows for simulating as jumps in the signal

itself (ruptures) by instantaneous assignment v1t = 1
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Figure 1: Original simulated signal (s), result of its

continuous smoothing (0), and two steps (1) and (2) of

�nding essential discontinuities: fractures * and rup-

tures **.

and v2t =1, as well as those in the signal's �rst di�er-

ence (fractures) by assignment v1t = 0 and v2t =1.

There is no need to take the signal-dependent poste-

rior mathematical expectations in the observation

model (2) in a more sophisticated form than

x̂o
t = [yt;

1

2
(yt�1 � yt+1)]

T

; (9)

because the current values of the observed signal and

its �rst di�erence are natural unbiased local estimates

on the respective constituents of the hidden process.

As to the posterior covariance matrices, there is no

reason, at least, in the case of elementary smoothing,

to place di�erent reliance on the local estimates x̂ot at

di�erent timemoments t, so, all theRo

t
should be taken

equal to each other. In addition, in the particular case

under consideration, it is su�cient to take them diago-

nal with identical posterior variancesRo
t = Diag(w ;w),

because values of yt = xt+�t at di�erent time moments

and, hence, di�erent elements of x̂o
t
(9) are formed

by independent identically distributed samples of the

white noise. Finally, the resulting degree of smooth-

ing is determined by ratio v=w, and, so, we can put

w = 1 without any loss in generality. Thus, the uni-

tary matrix will be a good choice for all the posterior

covariance matrices in the observation model Ro

t
= I.

Fig. 1 shows an example of stepwise �nding jumps

in the hidden process in accordance with the rule (7)

where � = 100. Only two steps turned out to be re-

quired for �nding all the discernible discontinuities in

the original signal.

In such a procedure, the smoothed curve manifests

new and new discontinuities, originally disguised by

noise, like an overloaded elastic rod of limited strength

gets fractured or ruptured, by stages, every time at the

point of maximal local stress, as precedent breaks re-

lieve former stress concentrations and create thereby

new ones.

4. EDGE-PRESERVING TIME-

FREQUENCY ANALYSIS

Within the bounds of the correlation theory, any sta-

tionary and ergodic random process yt on the in�nite

discrete time axis is completely representable by its

spectral density S(f) � 0, which is the distribution

of the full variance D = M
�
[yt �M(yt )]

2
	
over the

Nyquist frequency interval 0 � f < 1=2, so that

Z f2

f1

S(f)df = D(f1; f2) (10)

is the variance of the result of ideal band-pass �ltration

of yt in the frequency band (f1; f2) and D=D(0,1/2).

If a stationary random process yt is represented by

its parametric autoregression model yt = aTyt�1 + �t ,

where yt�1 = (yt�1; : : : ; yt�n)
T , a 2 R

n , and �t is

white noise with a constant variance, the spectral den-

sity is completely determined by autoregression coe�-

cient vector a and the variance of the process D, i.e.

S(f) = S(f ; a;D). The relevant formulas are to be

found in [5].

To bring such a parametric approach in more close

accordance with the needs of practical signal analysis,

it appears natural to consider the model parameters as

variables and, in doing so, extend the autoregression

model onto the case of nonstationary random processes

yt = aTt yt�1+�t , where the variance of the white noise

is no longer assumed to remain constant in time, either.

Such a model presupposes the existence of a hidden

vector process formed by the instantaneous parameter

values xt = (at ;Dt) 2 R
n+1 whose assumed smooth-

ness can be naturally expressed in terms of a hidden

Markov random process (1) with eventual abrupt dis-

continuities described by an appropriate jump function.

From such a standpoint, the processing of a signal

Y = (yt; t 2 T ) boils down to estimation of the real-

ization of the hidden process X = (xt ; t 2 T ) along

with the jump function W in full accordance with the

generalized technique described in Section 2, and to



recalculation of the obtained estimates into the succes-

sion of the respective instantaneous variance spectra

Ŝt(f) = S(f ; x̂t ), x̂t = (ât ; D̂t). It remains only to

specify the matrix parameters A and Vt of the hidden

model (1) and to choose the observation model (2).

There is no reason to presuppose any a priori inter-

dependence between the elements of the hidden vector

process xt = (x1
t
; : : : ; xn+1t

)T , therefore, the matrix in

the conditional mathematical expectation in (1) should

be taken unitary A = I [(n + 1)� (n + 1)].

Likewise, there is no reason to assume di�erent

smoothness properties of the elements of the autore-

gression parameter vector at = (a1
t
; : : : ; xn

t
)T , whereas

the smoothness degree of the process varianceDt should

be set individually. So, it is su�cient to determine the

diagonal covariance matrix V = Diag(v1; : : : ; vn+1) of

smoothness constraints, valid within the continuity in-

tervals, by two parameters v i = va , i= 1; : : : ; n, and

vn+1=vD , responsible for the smoothness of, respec-

tively, at and Dt. There are no grounds, either, to con-

sider more than one kind of breaks, so, it is su�cient to

mark each break-point by in�nite values of all the ele-

ments of the covariance matrix Vt = Diag(1; : : : ;1).

If we assume the current signal fragment Yt =

(yt;yt�1) to be the only source of informationon the in-

stantaneous hidden value at , the posterior mathemati-

cal expectation and inverse posterior covariance matrix

of the autoregression coe�cient vector can be shown,

respectively, to equal âo
t
= (yt=y

T

t�1yt�1)yt�1 and to

be proportional to Bo
t = yt�1y

T
t�1. Similarly, if the

current value yt is considered as the only source of in-

formation on Dt, the squared value y2t will be just the

posterior mathematical expectation of the hidden ran-

dom variance of the observed process at this time mo-

ment, and as to the posterior variance, it can be treated

as "proportional to unity". We needn't take care of the

proportionality coe�cients, because they a�ect only

the smoothness degree and always can be compensated

by an appropriate choice of smoothness parameters va

and vD . We needn't pay attention, either, to the de-

generacy of the covariance matrices for all t, because

the Kalman �lter in the basic procedure refers only to

their inversions when evaluating (4) and (5). So are

the reasons for taking the signal-dependent posterior

mathematical expectation x̂o
t
2 Rn+1 and covariance

matrix Ro
t [(n+1)�(n+1)] in (2) in the form, respec-

tively, x̂ot = (âot ; y
2
t )

T and (Ro
t )
�1

=

�
Bo

t 0

0 1

�
.

In Fig. 2, the results of time-frequency analysis of a

simulated signal with changing spectral properties are

shown in an abridged form as diagrams of partial signal

variances estimated in three adjacent frequency bands

(low, medium and high) D̂t(0; 1=6), D̂t(1=6; 1=3) and

Figure 2: Results of continuous and edge-preserving

time-frequency analysis of a simulated signal: diagrams

of current estimates on the instantaneous partial vari-

ances in the low (dark-gray), medium (gray) and high

(light-gray) frequency bands as the summands of an

estimate on the full current variance of the signal.

D̂t(1=3; 1=2) (10) making the Nyquist interval. The

spectral densities Ŝt(f) = S(f ; ât ; D̂t) were calculated

through the autoregression of the second order n = 2.

Both jumps in the spectral properties were found

on the �rst run by the rule (7) with � = 100.
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