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Abstract

Image formation is quantised by imposing an im-

age induced connection and computing the associated

torsion and curvature in terms of di�erential or inte-

gral invariants. Imposing invariance of the image for-

mation under the classical group of movements slot-

machines reading out the torsion and the curvature

are shown to locate endpoints and other type of inter-

esting topological objects. Requiring instead invari-

ance under the group of anamorphoses and the group

of di�eomorphisms of the image only ridges and ruts

can be identi�ed through a non-local topological or

integral geometric operation.

1 Introduction

The goal in image analysis and pattern recognition

is to �nd a stable and reproducible description and

encoding of an image or better its formation, that

is slightly a�ected by certain sets of transformations.

These sets include the group of anamorphoses, the

classical groups such as that of Euclidean movements

and the transformations caused by noise. In order

to achieve stability and reproducibility under these

transformations one turns to so-called scale-space

theories. A modelling of and a smoothing of the im-

age formation process appears to be in the context of

these theories indispensable [1].

Our aim is to demonstrate in section 2 that a grey-

valued image can be provided with a non-�at image

induced connection. Furthermore, that the torsion

and the curvature associated with this connection can

be measured in terms of di�erential or integral invari-

ants. These invariants in their turn can be expressed

in ordinary algebraic combinations of the image grey-
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values. It is shown that so-called ridges and ruts of

an image are the essential physical objects being in-

variant under the group of anamorphoses and di�eo-

morphisms of the image domain. Furthermore, that

they can be detected by a non-local topological or in-

tegral geometric operation. Section 3 concludes with

a discussion of further research.

2 Image Formation

Modern geometry of image formation is treated in

subsection 2.1 within the context of di�erential geom-

etry and in subsection 2.2 within that of integral

geometry. It's demonstrated that torsion and curva-

ture of the image formation can be expressed in terms

of the image structure and they reveal the topological

interesting objects in images such as ridges, ruts and

endpoints. For proofs of theorems and more extensive

expositions of modern geometry see the references in

[1]

2.1 Di�erential Geometry

Let M be a D-dimensional image do-

main parametrised by canonical coordinates

p = (p1; : : : pD). Now consider the frame bun-

dle F � P (M;�;A(D;R)) where P is the total

space consisting of all frames �p at each point

p 2 M , � : P ! M is the projection and

A(D;R) = GL(D;R) � T (D;R) the full a�ne group,

where Gl(D;R) is the general linear group and

T (D;R) the translational group. In this context let's

de�ne a local frame as follows.

De�nition 1 A local frame �p is de�ned by:

�p = (x; e1; : : : ; eD) (p);

where the vectors (x; e1; : : : eD)(p) span the local tan-

gent space TpA(D;R).
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Now an a�ne connection � in the frame bundle F is

de�ned as follows.

De�nition 2 An a�ne connection � in the frame

bundle F is de�ned in terms of the Lie algebra

G(D;R)-valued connection one-forms (!i; !
j
i ) and

the frame vectors (x; e1; : : : eD) through the following

equality:

rx = !iei; rei = !
j
i ej ;

where r is the covariant di�erential operator.

The a�ne connection � satis�es so-called structure

equations:

Theorem 1 Given an a�ne connection � in the

frame bundle F , de�ned in (2), then the connection

one-forms satisfy the following structure equations:

D!i = d!i + !ik ^ !
k = 
i;

D!ij = d!ij + !ik ^ !
k
j = 
i

j ;

where d the ordinary exterior derivative, ^ is the

wedge product, D the covariant derivative, 
i is the

torsion two-form and 
i
j is the curvature two-form.

In turn the torsion and the curvature two-form satisfy

so-called Bianchi identities:

Theorem 2 Let � be an a�ne connection in the

frame bundle F with torsion two-form 
i
0 and cur-

vature two-form 
i
j . The integrability conditions for

the structure equations, that are the Bianchi identi-

ties, are given by:

D
i = 
i
j ^ !

j ; D
i
j = 0;

After this concise summary let us quantise im-

age formation of a grey-valued image L0 on a two-

dimensional Euclidean image domain E2 onto R+ in

terms of its di�erential geometry. For generalisations

to higher dimensional spatio-temporal grey-valued

images possibly endowed with other local geometries

the reader is referred to [1]. The essential correspon-

dence between the di�erential geometries of images

on two-dimensional and higher dimensional domains,

however, will be indicated.

De�nition 3 A grey-valued image L0 on a two-

dimensional Euclidean space E2 onto R
+ is de�ned

by a scalar-valued density function:

L0 : E
2 ! R

+ :

Thus the grey-value of a pixel is normally just some

weighted integration of this density function over its

corresponding spatial neighbourhood. So an image is

some tested measure or better distribution.

Besides that we study the meaning of those dif-

ferential geometric invariants that are the same un-

der the spatially homogeneous Euclidean group ac-

tion E(2) we also contemplate the essence of those

di�erential geometric invariants not a�ected by the

group of anamorphoses and by the group of (volume

preserving) di�eomorphisms of the grey-valued im-

age.

De�nition 4 The group of anamorphoses of grey-

valued image (3) is the set of non-constant spatially

homogeneous and monotonic grey-value transforma-

tions f : L0 ! f(L0).

Note that an anamorphosis may invert the order of

the image grey-values. Anamorphoses become impor-

tant as soon as one would like to �nd the equivalences

in images realised by camera systems with di�erent

sensitivity characteristics.

De�nition 5 The group of di�eomorphisms G of the

grey-valued image (3) is de�ned by g(L0; x) = (�L0; �x)

with g 2 G such that the following conservation law

holds: Z



L0d
2x =

Z
�


�L0d
2�x:

This group plays a crucial role as soon as the imag-

ing plane is subjected to a Euclidean movement with

respect to the projection center. Level sets of the

grey-valued image under this type of transformation

do not coincide with central projected versions at all,

but the total �ux subtended by a �xed spherical an-

gle � should of course remain the same unless there

occur losses due to the change of the unit normal

to the imaging plane with respect to the visual rays

[1]. The reason for this non-trivial aspect in the im-

age formation is that a grey-valued image is a den-

sity and not a scalar function. In order to perform

a sensible analysis despite this group of transforma-

tions one "gauges" the vision system in a particular

manner, namely by imposing a spherical or elliptic

geometry after �xing a distance between the center

of projection and the imaging plane [1]. Doing so we

can de�ne equivalence relations for images under this

group of transformations because they now do not

cause any problem as they are nothing more than

rotations of the angular coordinatisation of the grey-

values. Note that di�eomorphisms of the image by

active transformations of the scene can still occur but

that they yield only speci�c equivalences we return

to later. Furthermore, that observation space for one

view has been simpli�ed considerably, but that the
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essential equivalence relations and objects consistent

with this view do not carry over to other views. The

only pragmatic attitude to adopt in dynamic monoc-

ular or binocular vision is just to establish dynamic

aspect graphs [1] in which each view is a visual event.

Last but not least one should realise that an image

is the consequence of a sampling at a certain resolu-

tion of an intensive physical �eld. Increasing the the

resolution properties yields non-versal deformations

(morphisms) of the coarser image. More precisely, an

coarse resolution image is a typical recombination of

a �ne resolution image in which the recombination

process is steered by a dynamical scale-space para-

digm [1]. The latter morphological changes gener-

ated by such a paradigm should not be confused with

those caused by an active exploration of the scene

that introduce upon approaching an object a relative

increase of the inner scale with which this object is

observed. As mentioned above these kind of changes

should be embedded in a more dynamic scale-space

paradigm to prevent ambiguities.

Now let us try to �nd some interesting image struc-

tures invariant under the above de�ned groups. The

essential physical objects of the image L0 invariant

under the �rst two groups of transformations above

are so-called isophotes and �owlines and their Euclid-

ean geometry.

De�nition 6 An isophote Ci of a two-dimensional

grey-valued image L0 is de�ned by:

L0(x1) = c 2 R+ :

De�nition 7 A �owline Cf of a two-dimensional

grey-valued image L0 is de�ned by:

dx2

dp
=

@L0

@xi
(x2(p)); x2(0) = x20 2 E2;

where p 2 R is an arbitrary parameter.

Let us make explicit some Euclidean di�erential

geometry of the net of isophotes and �owlines by

choosing a frame �eld � and a connection (!i; !ij)

as follows:

� = (x1; x2; e1; e2);

(!i; !ij) = (dsi;� i
kj ds

k);

with

� i
kj =

�
0 (�1)k+1�k

�(�1)k+1�k 0

�i
j

;

where e1; s
1; �1 and e2; s

2; �2 are unit tangent vec-

tor �elds, the Euclidean arclengths and curvatures

on the isophotes and �owlines, respectively (realise

that the latter curvature are just invariant zero-forms

being factors in the choice of connection). It is read-

ily shown by means of the Cartan structure equations

that the net of isophotes and �owlines with the above

connection has both a non-zero torsion tensor T and

a non-zero curvature tensor R:

T = T i
jk !j 
 !k 
 �i;

R = R
j

ikl !i 
 !k 
 !l 
 �j ;

where

T k
jk =

1

2
(� i

jk � � i
kj );

R i
jkl =

d� i
jl

dsk
�
d� i

kl

dsj
+ � m

jl � i
mk � � n

kl � i
nj :

Let's continue and �nd the essential physical ob-

jects of the above net invariant under the group of

(not necessarily total grey-value preserving) di�eo-

morphisms of the image domain caused by active

transformations. The latter active transformations

may lead to anamorphoses of the image or integrable

deformations of the net of �owlines and isophotes.

It's clear that the set of (non)-isolated singularities

and the set of discontinuities of L0 remain the same

topological equivalent sets under these transforma-

tions. The vanishing of the image gradient is not

a�ected, neither are discontinuities in L0. A set of

nonisolated singularities occurs, for example, for im-

ages like Ln0 (x; y) = �<
�
(x+ iy)

2n+1

2

�
; n 2 N. It

is not so straightforward to see that this invariance

also holds for the landscape of ridges and ruts of the

image L0 [1]. The latter topological equivalence can

be explained by the fact that at ridges and ruts the

integral curves of the image gradient have opposite

convexity. Consequently the connection at the ruts

and ridges is completely degenerate implying that any

order of derivative with respect to the Euclidean ar-

clength parameter s1 along the isophotes of the �ow-

line curvature �eld is vanishing. Because taking all

orders into account and the fact that to a �nite order

there will always be non-ridge or non-rut points for

which they are zero, it is impossible to distinguish

on the basis of a pure local analysis between ridges,

ruts and the borders of their in�uencing zones con-

sisting of e.g. in�ection points. Nevertheless, possible

ridges and ruts can be discerned on the basis of a lo-

cal analysis of the isophote curvature �1. If �1 > 0

and �2 = 0, then the points belong to the set of pos-

sible ridge points. If �1 < 0 and �2 = 0, then the

points belong to the set of possible rut points. In or-

der to �nd ridges and ruts one has to apply, as will
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be shown shortly in the next subsection, a non-local

topological or integral geometric operation.

The reader might object that these objects are

nothing more than some special sets of discontinuities

in the second order jet structure and that this multi-

jet property not only occurs for singular �owlines.

Indeed, the change in convexity is an image induced

discontinuity determined by multi-local properties of

the exterior derivative �eld of the image in�uenced by

second order jet information. And for isophotes such

changes in convexity do also occur. For example, at

the set of non-isolated singularities along the �owlines

of the images Ln0 mentioned above the isophotes also

change convexity. However, this set can be consid-

ered, equally well as the set of extrema of the image,

as just parts of the landscape of ridges and ruts. At

a n-junction where di�erent components of a set of

nonisolated singularities or ridges and ruts are coming

together there is just a n-fold branching or a n-fold

degeneracy of the image gradient, respectively.

The above image analysis can readily be extended

to those on higher dimensional image domains en-

dowed with other local geometries and smoothing

schemes [1]. For example in the case of three-

dimensional grey-valued images normally the unit

normal frame �eld to an isophote will be unique

but for some singular ones they will be multi-valued.

Again topological operations and slot-machines for

reading out torsion or curvature can be used to lo-

cate singularity or discontinuity sets of non-constant

co-dimension.

2.2 Integral Geometry

Following Cartan (see [1]) one can apply a displace-

ment to determine the translation vector �eld and the

rotation vector �elds to operationalise the torsion and

the curvature of the frame bundle F with connection

�.

De�nition 8 Let � be a connection in the frame

bundle F . The translation vector �eld b and the rota-

tion vector �elds fi determined by the connection are

de�ned by:

b =

I
C

rx; fi =

I
C

rei;

where C is an in�nitesimally small closed loop and

boundary of a two-dimensional submanifold S of M

with the same induced connection �. The sense of

traversing the loop is chosen such that the enclosed

submanifold is to the left.

On the basis of the connection one forms !i0 a folia-

tion of the manifold (M;�) can be realised and choos-

ing 1

2
D(D � 1) pairs of them will yield submanifolds

containing the desired submanifold S. These inte-

gral invariants are intrinsic vectors of the submani-

fold (S;�) and also of the manifold (M;�). Using

Stokes' theorem the translation and rotation vector

�elds can be expressed as [1]:

b =

Z
S


iei; fi =

Z
S



j
i ej :

At vertices of intersecting Volterra surfaces or at sin-

gularities where ridges and ruts meet the translation

and rotation vector �elds satisfy the following super-

position principles (conservation laws for "topologi-

cal" currents as Kirchho�'s law for electric currents):

B =
X

b; Fi =
X

fi;

where the sum is over the di�erent components of the

cut lines carrying vector �elds b and fi.

Figure 1: Left frame: a 256�256 pixel-resolution dis-

crete input image L0(x; y) = L00(x; y). Right frame:

the Euclidean length of the translation vector jbj for
a linearly scaled version of that image.

Now let us demonstrate that an integral geometric

operation su�ces to detect certain types of singu-

larity sets. In �gure 1 the length of the translation

vector �eld b for a discretised input image L0 on a

two-dimensional Euclidean space E2 is computed by

means of linear scale-space theory [1]. The set of

non-isolated singularities will instantaneously disap-

pear upon linear scaling, but the ridges and ruts, and

other type of discontinuities can be nicely detected.

Imposing invariance under the group of Euclid-

ean movements and the group of anamorphoses

the Euclidean geometry of the net of �owlines and

isophotes does matter. Computing the length jbj
shows clearly that the isophote curvature �1 is high

on (x; y) 2 R
� � 0 and that the �owline curvature

�2 increases on (x; y) 2 R
� � 0 approaching the ori-

gin (x; y) = (0; 0). Apparently the translation vector

b is a perfect slot-machine to locate cut lines and
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endpoints that are the essential topological objects

in two-dimensional images such as �ngerprint images

and images of vesseltrees.

Imposing in addition invariance under (volume pre-

serving) di�eomorphisms of the image domain only

ridges and ruts can be distinguished on the basis of

the valencies of the vertices and the energy values en-

closed by them. The detection of ridges and ruts can

be realised, as mentioned in the previous subsection,

by a non-local topological or integral geometric oper-

ation with respect to the unit normal �eld of the set

of �owlines along the isophotes. In the following we'll

make these methods explicit and illustrate them.

In order to actually �nd by a non-local topologi-

cal operation ridges and ruts parametrise the image

by means of e.g. the x2-axis and trace the extrema

of the image gradient length on each line for which

x2-value is constant. Local minima and maxima in

the image gradient length on these lines then corre-

spond to rut and ridge points, respectively. Alterna-

tively, take a strip of thinkness of one just noticeable

isophote and walk around the global maximum and

keep track of the extrema of the length of the image

gradient �eld upon encircling it with the next just

noticeable isophote. This supplies us with another

non-local topological method for �nding ridges and

ruts that is equivalent with the well-known watershed

method applied in mathematical morphology.

The non-local integral geometric operation consists

of a di�erence operation in a distributional sense (in-

tegral invariant manner) at the ridges and ruts along

the isophotes with respect to the unit normal �eld

of the sets of �owlines on either side of these singu-

lar �owlines. In the neighbourhood of in�ections of

the �owlines the unit normal �eld can not be de�ned

but on either side of the isophote passing through

the in�ections the convexity of the �owlines is the

same yielding consequently zero output. Note again

performing such an operation on the input image of

�gure 1 again highlights the x�-axis as cut line and

the origin as endpoint. The image formation can be

summarised as taking a half-in�nite strip on which is

de�ned a ramp image and wrapping this sub-image

to and forth the origin over the the x�-axis.

3 Further Research

In this paper modern geometry has been proven to be

extremely useful in quantifying the image formation

of grey-valued images and localising essential physical

objects like ridges, ruts and endpoints. This geomet-

ric expertise allows us now to conceive an image as a

�nite CW-complex in which the ridges, ruts and other

type of singularity sets are the essential physical ob-

jects bordering di�erent image formation processes.

A study of these CW-complexes and particular paths

on them, for example paths in three-dimensional im-

ages on ribbon knots, can be quite fruitful in estab-

lishing the topological aspects involved in the global

image formation processes. The latter topological as-

pects might then for instance be quanti�ed in terms

of so-called (generalised) Vassiliev invariants specify-

ing the dynamical processes involved. In this context

it might be also interesting to �nd other topologi-

cal invariants by applying Chern-Simons perturba-

tion theories. Establishing equivalence relations in

terms of these kind of topological invariants might

be worthwhile in case of a description of dynamical

aspect graphs. Moreover, the "half-space method"

introduced in [1] can re�ne the local multi-jet struc-

ture (of the topological currents) considerably and

thus the equivalence relations on the CW-complexes.

In [1] the author proposed to smooth the vector

density �elds quantising the image formation in a

non-linear di�erential or integral geometric manner.

In this context it might be interesting to formulate

also so-called dynamic scale-space theories that are

topologically equivalent or, as physicists say, that are

covariant. According to this author one then has to

turn to theories taking the landscape of ridges and

ruts, and the total grey-values in between as a �nite

CW-complex. The �nite CW-complex structure can

savely be subjected to morphisms de�ned in terms of

the valencies and the couplings on the CW-complex.

One might conjecture that depending on the partic-

ular chosen paradigm to achieve a task certain types

of dynamical processes will survive, whereas others

de�nitively will fade out. First studies and experi-

ments con�rm that certain types of dynamic scale-

space paradigms lead to recurrence of certain topo-

logical image formation characteristics, whereas oth-

ers de�nitively yield irreversibly trivial ones. Further

research in dynamic scale-space theories with respect

to CW-complexes representing image formation that

conserve certain topological aspects should be under

way by now. The outcomes of such a research might

have some spin-o� in autonomous system research,

cognitive sciences and the �eld of arti�cial intelli-

gence.
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