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ABSTRACT

The objective of this paper is to investigate a new
non-iterative paradigm for image reconstruction based
on the use of nonlinear back projection filters. This
method, which we call nonlinear back projection (NBP),
attempts to directly model the optimal inverse opera-
tor through off-line training. Potential advantages of
the NBP method include the ability to better account
for effects of limited quantities and quality of mea-
surements, image cross-section properties, and forward
model non-linearities. We present some preliminary
numerical results to illustrate the potential advantages
of this approach and to illustrate directions for future
investigation.

1. INTRODUCTION

In recent years, considerable effort has been put into
the development Bayesian model-based approaches to
tomographic image reconstruction[1, 2, 3]. While these
methods can substantially improve reconstruction qual-
ity, these iterative methods can be computationally de-
manding, requiring at least 10 to 20 times the com-
putation of filtered back projection. Even the best
reconstruction algorithms may produce artifacts that
can be visually identified in limited data problems. In
fact, several techniques have been proposed to take ad-
vantage of restrictive a priori knowledge of the object
to compensate for these limitations in nonlinear geo-
metric reconstruction [4, 5, 6]. The fact remains that
conventional filtered back projection (FBP) can pro-
duce surprisingly good quality reconstructions despite
its limitation to simple averaging of projection data.

In this research, we propose a more direct and non-
linear approach to the Bayesian tomographic inverse
problem. Rather than trying to develop an accurate
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forward model that can be inverted, our approach is
to directly model the inverse operator. The goal
is to develop an non-iterative Bayesian reconstruction
method which requires computation comparable to con-
ventional CBP methods, but achieves quality compari-
ble to or better than that of current Bayesian methods.

The method we propose forms a back projected im-
age cross-section by applying non-linear filters to the
projected data. This method, which we call non-linear
back projection, attempts to directly model the opti-
mal inverse operator through off-line training of these
non-linear filters using example training data. This di-
rect approach to modeling of the inverse operator has
a number of potential advantages which make it inter-
esting:
Better modeling of image cross-section behav-
ior - Current Bayesian models, such as MRF’s are lim-
ited in their complexity by the difficulty of estimating
model parameters. A direct model can be more effec-
tively trained for the attributes of typical image cross-
sections.
Better modeling of non-linear forward models -
Non-linear forward models are difficult to incorporate
in current Bayesian methods. This problem is avoided
by direct modeling of the inverse operator.
Less computation - Since direct non-linear inversion
is not iterative, it has potentially much lower compu-
tational requirements.

2. NON-LINEAR BACK PROJECTION
METHOD

The nonlinear back projection tomography (NBP) method
is illustrated in Fig. 1. Conventional CBP works, as
shown in Fig. 1(a), by filtering the projections along a
specific angle, θ, and then back projecting the result.
Theoretically, this method yields perfect reconstruction
with a continuum of data, but in practice it is well
known to produce artifacts, and either overly smooth
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Figure 1: This figure illustrates that basic concept
of nonlinear back projection. (a) Conventional CBP
works by filtering the projections at each angle and
then back projecting the result. (b) Nonlinear back
projection applies a nonlinear filter to a window of data
in the sinogram and then back projects this result.

or excessively noisy reconstructions. The NBP method
works by applying a nonlinear filter to a window in
the sinogram space as illustrated in Fig. 1(b). The be-
havior of this filter depends on the local characteristics
of the sinogram. In addition, the filter’s characteris-
tics may depend on the specific pixel being back pro-
jected; however, we will not consider this dependence in
the present investigation. The non-linear filter is then
formed by combining M distinct linear filters, each of
which is designed to minimize mean squared error for
some class of input values. A related model has been
proposed by Popat and Picard [7] for application in
image restoration, and compression.

3. DERIVATION OF NBP ALGORITHM

Let Y be a vector containing all the sinogram data, and
let X be a pixel in the unknown image cross-section.
Furthermore, let Yj be the vector of sinogram samples
taken from the jth window. In other words, j indexes
the projection angle and Yj contains the samples from
the filter window of Fig. 1(b). Notice that the posi-
tion of the window along both the t and θ coordinates
will depend on the particular pixel being reconstructed.
For simplicity, we will assume that the center pixel of
the window falls precisely on the on the path integral
required for back projection. In practice, the back pro-
jection is interpolated by a weighted combination of
neighboring projection windows, but this does not sub-
stantively effect the resulting analysis.

The conventional CBP reconstruction may be ex-
pressed as

X =
∑
j

FYj

where F is the matrix which implements a filter along
t, and the sum over j is the back projection operation.
For conventional CBP, the matrix F does not depend
on j, the projection angle. Moreover, most of the ele-
ments in F are zero since only the samples at a single
angle are filtered.

For NBP, we will make the assumption that each set
of samples, Yj , has associated with it a discrete class,
Cj , which takes on values between 0 andM−1. Instead
of a single filter, we will have M filters denoted by Fc
where 0 ≤ c < M . We will make two assumptions
expressed in the following two equations.

E[X |Y,C] =
∑
j

FCjYj

P{Cj = c|Y } = f(c|Yj) .

The first equation states that given the class informa-
tion, the minimum mean squared error (MMSE) esti-
mate may be obtained by applying an appropriate filter



to each window. The second equation states that the
distribution of each class is only dependent on the pix-
els in the associated window. Using these two assump-
tions, we compute the MMSE estimator of X given Y .

E[X |Y ] = E[E[X |Y,C]|Y ] (1)

= E

∑
j

FCjYj

∣∣∣∣∣∣Y


=
∑
j

E
[
FCj |Y

]
Yj

=
∑
j

(∑
c

Fcf(c|Yj)

)
Yj

Intuitively, this optimal estimator is formed by apply-
ing a spatially varying filter,

∑
c Fcf(c|Yj) to the sino-

gram. Since the filter depends on the data in the win-
dow through f(c|Yj), this is actually a nonlinear filter.
The image is then reconstructed by back projecting the
nonlinearly filtered sinogram.

To apply this strategy, the filters Fc and the distri-
bution f(c|Yj) must be estimated. To do this, we first
rewrite (1) in the form

E[X |Y ] =
∑
c

Fc

∑
j

f(c|Yj)Yj

 =
∑
c

FcȲc

where Ȳc =
∑
j f(c|Yj)Yj . By defining,

F∗ = [F0,F1, · · · ,FM−1]

Ȳ =


Y0

Y1

...
YM−1


the optimal filters may be easily computed as the least
squares solution to

min
F∗

E
[∥∥X − F∗Ȳ

∥∥2
]

In order to compute the probabilities f(c|Yj), we
use a Gaussian mixture model for Yj so that

p(yj) =
∑
c

p(yj |c)πc

where p(yj |c) is a multivariate Gaussian distribution,

and
∑M−1
c πc = 1. The parameters of p(yj |c) and the

probabilities πc may be estimated using the EM algo-
rithm [8, 9, 10]. Given the mixture model, we have

f(c|Yj) =
p(yj |c)πc∑
c p(yj |c)πc

.

4. EXPERIMENTAL RESULTS

In this section we present preliminary experimental re-
sults to illustrate the method of NBP. Figures 2 (a)
and (b) show the synthetic phantom together with the
filter back projection reconstruction. The cross section
was reconstructed at a resolution of 128× 128 from 16
uniformly spaced projection angles. Figure 2 (c) and
(d) show the result of training and applying NBP with
18 and 60 clusters respectively. Notice that the NBP
reconstructions have reduced artifacts because each of
the filters is designed to smooth these errors. However,
some sharpness is also lost along the edges of features.
We believe that this sharpness can be recovered by al-
lowing filters to vary depending on the spatial location
of pixels in the image.

Figure 3 illustrates how the filters for various clus-
ters vary. Each slice through the 3-D plot shows the
filter values for a specific cluster. Notice that some
filters are impulsive while others are smoothing func-
tions.

Figure 4 shows how the mean squared error (MSE)
varies with the number of clusters used in the NBP
reconstruction. The MSE is normalized with respect
to filtered back projection reconstruction; so an MSE
of 1 is equal to that of filtered back projection. Notice
that as the number of clusters is increased the MSE de-
creases because the projections with different behaviors
can be treated differently. This effect is more notice-
able when the MSE is computed on the entire image
because of the large discontinuity generated at the sup-
port boundary of the object.

5. CONCLUSION

We presented a novel nonlinear image reconstruction
algorithm which is conceptually similar to filtered back
projection, but is not limited by a restriction to linear
filters. Preliminary results indicate that the method
can reduce reconstruction artifacts. We expect that
the method can be improved by making the filters a
function of both the cross-section pixel and the projec-
tion data.
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Figure 3: Plot of 18 different filters used in back pro-
jection operation. Each filter has 9 taps. Notice that
some filters are impulsive while others are smoothing
functions.
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Figure 4: Plot of mean squared reconstruction error
versus number of clusters. A value of represents the
mean squared error achieved by filtered back projection
Notice that the error decreases more rapidly for the
entire image since this includes the large discontinuity
along the support boundary of the object.
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Figure 2: (a) Original phantom used for simulations; (b) Filtered back projection reconstruction; (c) Nonlinear
back projection result using 18 clusters; (d) Nonlinear back projection result using 60 clusters.


