
NONLINEAR SYSTEM IDENTIFICATION BY WAVELET

MULTIRESOLUTION ANALYSIS

M. Pawlak�

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

Z. Hasiewicz

Institute of Engineering Cybernetics

Technical University of Wroc law

Wroc law, Poland

Abstract

This paper deals with the problem of reconstruction
of nonlinearities in a certain class of nonlinear systems
of composite structure from their input-output obser-
vations when a prior information about the system is
poor, thus excluding the standard parametric approach
to the problem. The multiresolution idea, being the
fundamental concept of modern wavelet theory, is ad-
opted and is applied to construct nonparametric iden-
ti�cation techniques of nonlinear characteristics. The
pointwise convergence properties of the proposed iden-
ti�cation algorithms are established.

1 INTRODUCTION

A large class of physical systems in practice are nonline-
ar or reveal nonlinear behavior if they are considered
over a broad operating range. Hence the commonly
used linearity assumption can be regarded only as a
�rst-order approximation to the observed process. Sy-
stem identi�cation is the problem of complete deter-
mination of a system description (mathematical mo-
del) from an analysis of its input and output data. A
large class of techniques exist for identi�cation of li-
near models. Much less attention, however, has been
paid to nonlinear system identi�cation, mostly becau-
se their analysis is generally harder and because the
range of nonlinear model structures and behaviors is
much broader than the range of linear model struc-
tures and behaviors. There is no universal approach
to identi�cation of nonlinear systems, and existing so-
lutions depend strongly on a prior knowledge of the
system structure, see [1], [2], [3], [8] for some techni-
ques for nonlinear system identi�cation. In general,
the causal nonlinear (discrete time) system transforms
the input data fXt; t � ng into the output signal Yn at
the time n. This transformation can be approximated
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in various ways and an early approach relies on Vol-
terra and Wiener expansions. These representations
lead, however, to very complicated identi�cation algo-
rithms since multidimensional Volterra/Wiener kernels
must be evaluated, requiring often an extremely large
input-output data set. An alternative strategy is based
on the assumption that the system structure is to some
extent known. This yields the concept of block-oriented
models, i.e., models consisting of linear dynamic subsy-
stems and static nonlinear elements connected together
in a certain composite structure. Signals interconnec-
ting the subsystems are not accessible for measure-
ments making the identi�cation problem not reduci-
ble to standard situations, i.e., identi�cation of linear
dynamic systems and recovering memoryless nonlinea-
rities. A class of cascade/parallel models is a popular
type of block-oriented structures, i.e., when linear dy-
namic subsystems are in a tandem/parallel connection
with a static element. Examples of such models include
cascade Hammerstein, Wiener and sandwich structu-
res and their parallel counterparts, [1], [2], [3], [6], [7],
[10]. The popularity of these connections stem not on-
ly from their relative simplicity (allowing us to design
a constructive identi�cation algorithms) but surprisin-
gly from their ability to approximate closely systems
which are not necessarily of this form. This is parti-
cularly the case if one allows in the cascade/parallel
models a general class of nonlinear characteristics not
being able to be parametrized and smooth, e.g., not
being just a polynomial of a �nite order. We refer to
[1], [3] for parametric identi�cation techniques of the
cascade/parallel block-oriented models with polynomi-
al nonlinearities. The parametric restriction is often
too rigid, i.e., if one chooses a parametric family that is
not appropriate form then there is a danger of reaching
incorrect conclusions in the system identi�cation. In
[6], [7], [10] the nonparametric approach to identi�ca-
tion of the cascade/parallel block-oriented models has
been proposed. The aim of nonparametric methods is
to relax assumptions on the form of an underlying non-



linear characteristic, and to let the training data decide
which characteristic �ts them best. These approaches
are powerful in exploring �ne details in the nonlinear
characteristics. In this paper we consider the nonpara-
metric approach to the identi�cation of a broad class of
nonlinear composite models which includes most pre-
viously de�ned connections. We are mostly interested
in recovering a nonlinearity which is embedded in a
block oriented structure containing dynamic linear sub-
systems and other "nuisance" nonlinearities. Our iden-
ti�cation approach combines the concept of regression
analysis and the theory of orthogonal bases origina-
ting from multiresolution and wavelet approximations
of square integrable functions. This theory provides
elegant techniques for representing the levels of details
of the approximated function and consequently gives
better results than other approximation methods, see
[4], [5], [9], [11], [12] for a full account of the theory and
applications of this subject.

2 NONLINEAR COMPOSITE

SYSTEMS

A class of nonlinear composite systems examined in
this paper is described by the following equation:

8>>><
>>>:

On = �(Xn) + �n

�n =

n�1X
j=�1

sn�j�n�j(Xj) ;

Yn = On + "n

(1)

where (Xn; Yn) is the input- output pair, �(�) repres-
ents the unknown system nonlinearity, f�ng is the sy-
stem "noise" process characterizing the system history
and f"ng is the measurement noise. The system noi-
se process f�ng has an in�nite convolution representa-
tion with the weight sequence fsjg and the transfor-
med input sequence f�j(Xn�j)g. It is important to
note that the nonlinear functions f�j(x)g need not be
known. The following assumptions concerning the mo-
del in (2.1) are used in the paper:

Assumption 1: The inputs signals fX1; X2; : : :g form
a sequence of independent and identically distributed
random variables which are independent of f"ng. The
probability density f(�) of fX1; X2; : : :g is unknown and
satis�es the following restrictions:

Z 1

�1

f2(x) dx < 1 (2)

0 < � � f(x) (3)

for all x 2 R and some unknown �.

Assumption 2: The parameters characterizing the
system noise process f"ng satisfy the following condi-
tions:

E�j(X) = 0 ; j = 1; 2; : : : (4)
1X
j=1

s2jE�
2
j (X) <1 (5)

1X
j=1

jsjjj�j(x)j <1 ; for almost x 2 R (6)

1X
t=1

1X
j=1

jsjst+j jEfj�j(X)�t+j (X)jg <1 (7)

Assumption 3: The nonlinear characteristic �(�) is a
measurable function satisfying the following conditions:

E�2(X) <1 (8)Z 1

�1

(�(x)f(x))
2
dx <1 (9)

Assumption 4: The measurement noise f"ng is uncor-
related and such that:

E"n = 0 ; var "n <1 (10)

The restriction (A1.1) is required since we use the
L2(R) multiresolution decomposition of f(x). The con-
dition (A1.2) says that we consider the estimation pro-
blem in such points on R where the input density is
high, i.e., where f(x) is strictly bounded away from
zero. The assumptions (A2.1) and (A2.2) are necessa-
ry for f�ng to be the second order covariance statio-
nary stochastic process. This along with Assumption

(A3.1) and Assumption 4 makes the output process
fYng well de�ned, i.e., it is also a second order stocha-
stic process. It is worth noting that fYng is not strict-
ly stationary process. The conditions (A2.3), (A2.4),
(A3.2) put some restrictions on the system dynamics
and they are required for the convergence property of
our identi�cation procedure for recovering �(�). Let
us note that (A2.3) is meant in the Lebesque measu-
re sense, i.e., it holds at all points x 2 R, except sets
with zero Lebesque measure. In particular (A2.3) is
true at all points where f�j(x); j = 1; 2; : : :g are con-
tinuous functions. Surprisingly there is a large class
of block-oriented nonlinear models which fall into the
description given in (2.1). This includes, e.g., the follo-
wing popular connections: memoryless system, casca-
de Hammerstein system, parallel system, parallel-series
structures, cascade Wiener system.



3 IDENTIFICATION

ALGORITHMS

It is a fundamental fact for our paper to observe that

E fYn jXn = xg = �(x) ;

i.e., the system nonlinearity is equal to the standard
regression function. Thus by estimating the regressi-
on we can recover the non-linearity �(x). Due to this
fundamental property we can treat �(x) as a standard
regression function of Yn on Xn = x. In order to con-
struct an estimate of the regression function let us �rst
observe that �(x) = g(x)=f(x), where g(x) = �(x) f(x)
for every x where the assumption (A1.2) holds. Owing
to the assumptions in (A1.1), (A3.2) we can approxi-
mate g(x) and f(x) by their projections on the mth
multiresolution subspace of L2(R) as follows:

gm(x) =
X
k2Z

amk�mk(x)

fm(x) =
X
k2Z

bmk�mk(x)

where one can easily observe that

amk =

Z 1

�1

�(x)�mk(x)f(x) dx = E fYn�mk(Xn)g

and

bmk =

Z 1

�1

�mk(x)f(x) dx = E f�mk(Xn)g

Here f�mk(x); k 2 Zg is the orthonormal basis for the
mth resolution subspace. Empirical counterparts for
gm(x) and fm(x) given above can be easily constructed
�rst by replacing the expected values in the formulas
for amk and bmk by their natural estimates

âmk = n�1
nX
i=1

Yi�mk(Xi)

b̂mk = n�1
nX
i=1

�mk(Xi)

and next by cutting o� the number of terms to some
�nite value referred to in this paper as a truncation
value q. All these things yield the following estimator
of �(x) utilizing 2q+1 terms at the resolution level m:

�̂m(x) =

X
jkj�q

âmk�mk(x)

X
jkj�q

b̂mk�mk(x)

It is worth noting that the truncation value should be
su�ciently large to have �̂m(x) well de�ned. The re-
solution level m plays the most important role in both
asymptotic and �nite sample size performance of the
estimators. In fact it is required thatthe resolution le-
vel m must be chosen as a function of the sample size
n, i.e., m = m(n) in such a way that

m(n) ! 1

and

2m(n)

n
! 1

as n!1. Then under Assumptions 1-4 the following
convergence property can be established:

�̂m(n)(x) ! �(x)

as n ! 1 in probability for almost all x 2 R.

This property holds for all input densities f(�) and all
measurable nonlinearities �(�) which satisfy Assumpti-
on 1 and Assumption (A3.2). No continuity conditions
for the characteristic �(�) are required. Under further
smoothness conditions on �(�) and f(�) we demonstrate
that m(n) can be speci�ed as m(n) = 1

3
log2(n) yiel-

ding the rate O
�
n�1=3

�
, in probability. The latter re-

sult holds for the �rst order multiresolution basis as,
e. g. the Haar system. A faster rate of convergence
can be obtained with the higher order multiresolution
orthonormal systems.
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