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ABSTRACT

Two approaches of multistage gradient robusti�-

cation for image contour detection are presented

in this paper: two stages of Di�erence of Es-

timates and Di�erence of Estimate followed by

an optimal �ltering. Watershed transformation

is then applied to these robusti�ed gradient im-

ages to e�ectively detect image contours which

are guaranteed to be in closed form. Multistage

gradient robusti�cation provides the 
exibility of

using di�erent image processing techniques and

produces good detection results for the images

highly corrupted with noise.

1. INTRODUCTION

Contour detection is a key step in computer vi-

sion systems. It converts a gray-scale image into

a binary one which preserves a great deal of use-

ful information in the original image. The rest

of the vision process can deal with the simple

form, instead of dealing with the gray-scale im-

age directly. The contours of an image are usu-

ally considered to be lines where the gray tone is

varying quickly compared to the neighbourhood.

The contour can be emphasized by taking

the gradient of the image. If this gradient im-

age is regarded as a relief, the searched contours

correspond to some crest lines of the gradient

function. Not all crest lines are interesting in

segmenting the image, however. Only the closed

contours should be extracted. The gray scale

skeleton of the gradient image has parasitic den-

drites, i.e. lines that are not closed. In order to

remove these useless lines we resort to watershed

transformation.

Watershed transformation [3, 4] starts with

a gradient image as input, the contours of an

image are de�ned as the watersheds of its gradi-

ent, the morphological gradient is thus the basis

of the morphological approach to contour detec-

tion.

The standard morphological gradient su�ers

from the problem of excessive noise sensitivity

and inevitably leads to erroneous contours. Mul-

tistage gradient robusti�cation method is pro-

posed in this paper as an extension of Di�erence

of Estimates(DoE) approach to robustify gradi-

ent operators in noise environments.

2. MORPHOLOGICAL GRADIENT

AND DIFFERENCE OF

ESTIMATES

Morphological gradient operators enhance vari-

ations of pixel intensity in images. It's de�ned

as the di�erence between the dilated version and

the eroded version of the original image X :

G(X) = (X � B)� (X 	B) (1)

In case the structuring element B is 
at, the

morphological operations of dilation � and ero-

sion 	 are then equivalent to the computation

the local maximum and minimum. Therefore,

the gradient at any point (m;n) 2 X is the max-

imum variation of the gray level intensities in the

given window:

Gx(m;n) = maxfWx(m;n)g �minfWx(m;n)g

(2)

Fig. 1.b,e and Fig. 2.b,e show the output

of the above-de�ned gradient operator acting
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Figure 1: a)Original image Peppers (512�512), the

marked square is the training set; b)Morphological

gradient of a); c)Detected contours of b); d)Image

Peppers corrupted with salt(10%) and pepper(10%)

noise; e)Morphological gradient of d); f)Detected

contours of e).

on the test images, Fig. 1.c,f and Fig. 2.c,f are

their corresponding contours detected using wa-

tershed transformation. It is obvious to see

that the standard gradient operator is not resis-

tant against noise. The Di�erence of Estimates

(DoE) approach [6] is therefore proposed to ro-

bustify the gradient operator. Let ~X be the cor-

rupted version of desired image X , DoE is for-

mulated as

DoE~x(m;n) = Nmax(W~x(m;n))�Nmin(W~x(m;n))

(3)

The rationale is that we choose two nonlinear �l-

ters Nmax and Nmin to replace the maxf�g and

minf�g �lters such that the di�erence of esti-

mates, DoE~x(m;n) is a good approximation to

the di�erence of the local maximum and mini-

mum of the noiseless image. The optimal non-

linear �lters Nmax and Nmin are designed under

MAE criterion.

Figure 5.a,b, Figure 6.a,b show the sig-

ni�cant improvement of threshold Boolean �l-

ter(TBF) [7] based gradient operator and order

statistic(OS) based gradient operator acting on

the impulse and Gaussian noise corrupted im-

ages. TBF gradient [4] drops the stacking con-

straint and requires less computation than stack

�lter gradient which was proposed in [6, 8]. OS

gradient [4] drops the symmetry restriction ex-
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Figure 2: a)Original image Cermet (256 �

256), the marked square is the training set;

b)Morphological gradient of a); c)Detected contours

of b); d)Image Cermet corrupted with Gaussian

noise(mean=0,variance=200); e)Morphological gra-

dient of d); f)Detected contours of e).

isting in quasi-ranges [9], thereby relaxing the

limits to the available tuning.

For e�ective noise suppression in highly cor-

rupted image, gradient operator usually requires

a large window and consequently su�ers from

very high computational complexity. This sit-

uation may be remedied by multistage gradient

robusti�cation which will be discussed in detail

next.

3. TWO-STAGE OF GRADIENT

ROBUSTIFICATION

Two approaches were studied to accomplish

two-stage gradient robusti�cation. The �rst way

is to apply nonlinear �lters sequentially to es-

timate the dilation and erosion of uncorrupted

image X from noise corrupted observation ~X:

G2( ~X) = Nmax2fNmax1( ~X)g�Nmin2fNmin1( ~X)g

(4)

Another way is a mixture of the DoE and

adaptive �ltering schemes: one stage of Di�er-

ence of Estimates followed by an optimal �lter-

ing to further enhance the performance:

G
0

2( ~X) = FoptfNmax1( ~X)�Nmin1( ~X)g (5)

The 
ow charts for these two methods are

depicted in Fig. 3, and Fig. 4. The algorithms
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Figure 3: Two-stage of Di�erence of Estimates

proceed as follows:

1)First, nonlinear �lter Nmax1 (Nmin1) is de-

signed through adaptation algorithm minimiz-

ing the mean absolute error between max(X)

(min(X)) and Nmax1( ~X) (Nmin1( ~X)).

2)Noise corrupted image ~X is then �ltered by

Nmax1 (Nmin1), producing an output Nmax1( ~X)

(Nmin1( ~X)). A one-stage gradient operator is

formed by

G1( ~X) = Nmax1( ~X)� Nmin1( ~X) (6)

3.1)For two-stage DoE(MaxMax{MinMin),

step 1 is repeated to obtain the �lter

Nmax2 (Nmin2), here MAE adaptation is

carried out between max(X) (min(X)) and

Nmax2(Nmax1( ~X)) (Nmin2(Nmin1( ~X))).

3.2)For DoE+Fopt approach, the optimal �l-

ter Fopt is designed by adaptation algorithm

minimizing MAE e.g. [10, 11, 12] or MSE [13]

between the output of standard morphological

gradient operator acting on the original uncor-

rupted image X and the output of the �lter

Fopt operating on the previous one-stage gradi-

ent G1( ~X).

4)Two-stage gradient operators expressed by

Eq. 4,5 are then used in processing other images

to obtain accurate approximations of noiseless

morphological gradient.

4. IMPLEMENTATION AND

EXPERIMENTAL RESULTS

There are a wide variety of possible combina-

tions of DoE and adaptive �ltering algorithms to

construct a two-stage gradient operator. Based

on the good performance of TBF, OS and LMS

linear �lter [4] for impulse and Gaussian noise
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Figure 4: Di�erence of Estimates followed by an

optimal �ltering

removal, they are chosen to present here to form

two-stage gradient operators.

For impulse corrupted Peppers image

(Fig. 1.d), we consider a cascade of two TBF

�lters to more robustly estimate the noise-free

dilation and erosion, and it is presented below:

G2(X(n)) =

FTBF3fFTBF1(X(n))g � FTBF4fFTBF2(X(n))g

(7)

X(n) is the observed noisy image window pro-

cess containing N1 +N2 + 1 = N samples:

X(n) = [x(n�N1); x(n�N1+1); : : : ; x(n+N2)]
T

(8)

For Gaussian noise corrupted image Cermet

(Fig. 2.d), the OS gradient is followed by an op-

timal FIR �ltering to form a two-stage gradient

operator:

G
0

2(X(n)) = FFIRfFos (r1)(X(n))�Fos (r2)(X(n))g

(9)

r1 and r2 do not necessarily have to be symmet-

ric like N + 1� r and r in the quasi-ranges. We

call

Gmq(X(n)) = Fos (r1)(X(n))� Fos (r2)(X(n))

(10)

modi�ed quasi-ranges.

The linear FIR �lter is expected to e�ectively

attenuate Gaussian noise.

The simulation results for these two methods

are shown in Fig 5.c,d, Fig 6.c,d. They are su-

perior to any one-stage gradient robusti�cation

in terms of noise cancellation.

The number of regions in the detected con-

tour image was used as a quantitative measure-

ment to evaluate the performance of proposed

gradient operators. Table 1 lists the results ob-

tained.
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Figure 5: a)One-stage TBF gradient of noisy Pep-

pers; b)Detected contours of a); c)Two-stage TBF

gradient of noisy Peppers; d)Detected contours of c).

Table 1: Comparisions of di�erent

algorithms1:

Number of regions in

Method contour detected image

Impulsive Gaussian

Peppers Cermet

Standard grad. 15417 3170

One-stage DoE 4074(TBF) 1089(OS)

Two-stage DoE 3336(TBF) 232(OS+FIR)

5. CONCLUSIONS

Based on the DoE approach to gradient robusti-
�cation and adaptive �ltering for noise removal,
we derived two multistage gradient algorithms
to achieve good contour detection for noisy im-
ages. The �rst approach is a cascades of two
DoE operators. The second one is one-stage DoE
followed by an adaptive �ltering to further im-
prove the performance, proper incorporation of
linear method in this approach is very e�ective
for Gaussian noise attenuation. Results obtained
by applying these new schemes to both impulse
and Gaussian noise corrupted images indicate
that they are more noise resistant than their one-
stage counterparts for highly corrupted images
at the cost of higher computational complexity.
On the other hand, they are more cost e�cient
compared with one-stage DoE with large window
size.

1Algorithms are speci�ed in ( ), window size is 3� 3
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Figure 6: a)One-stage gradient of noisy Cermet;

b)Detected contours of a); c)Two-stage gradient of

noisy Cermet; d)Detected contours of c).

References

[1] J. F. Rivest, P. Soille, S. Beucher, \Morpholog-

ical gradients", SPIE vol.1658 Nonlinear Image

Processing III, pp.139-150.

[2] S. J. Lee, R. M. Haralick and L. G. Shapiro,

\Morphological edge detection", IEEE Trans.

Robotics and Automation, Vol. RA-3, No.2,

pp.142-156, April, 1987.

[3] A. Moga, B. Cramariuc, M. Gabbouj, \An ef-

�cient watershed segmentation algorithm suit-

able for parallel implementation", in Proc. IEEE

International Conference on Image Processing,

Washington, D. C. , October 1995.

[4] P. Xiao, \Watershed Segmentation of Noisy Im-

ages", Master's thesis, Tampere Univ. of Tech.,

Finland, November 1996.

[5] P. Xiao, A. Moga, M. Gabbouj, \Segmenta-

tion of noisy images with watershed transforma-

tion" 1996 IEEE Nordic Signal Processing Sym-

posium, pp. 263-265, Sept. 24-27, Espoo, Fin-

land.

[6] J. Yoo, C. A. Bouman, E. J. Delp, E. J. Coyle,

\The nonlinear pre�ltering and Di�erence of Es-

timates approaches to edge detection: applica-

tions of stack �lters", CVGIP:Graphical Mod-

els and Image Processing, Vol.55, pp.140-159,

March 1993.

[7] K. D. Lee, Y. H. Lee, \Threshold Boolean �l-

ters", IEEE Transactions on Signal Processing,

Vol.42, No.8, pp.2022-2036, August 1994.

[8] D. Petrescu, I. Tabus, M. Gabbouj, \Edge de-

tectors based on optimal stack �ltering under



given noise distribution", in Proc. of ECCTD-

95, European Conference on Circuit Theory and

Design, Vol.2, pp.1023-1026, 1995, Istanbul,

Turkey.

[9] I. Pitas, A. N. Venetsanopoulos, \Edge detec-

tors based on nonlinear �lters", in Proc. IEEE

Transactions, Robotics and Automation, April

1987.

[10] J. H. Lin, I. M. Sellke, E. J. Coyle, \Adap-

tive stack �ltering under the mean absolute er-

ror criterion", IEEE Transactions on Acoustics,

Speech and Signal Processing, Vol. 38, No.6,

pp.938-954, June 1990.

[11] L. Yin, J. Astola, Y. Neuvo, \Adaptive weighted

median �ltering under the mean absolute error

criterion ", IEEE Workshop on Visual Signal

Processing and Communications, June 1991, Hs-

ingchu, Taiwan.

[12] L. Yin, J. Astola, Y. Neuvo, \Optimal weighted

order statistic �lters under the mean absolute

error criterion ", International Conference on

Acoustics, Speech, and Signal Processing, May

1991, Toronto, Canada.

[13] B. Widrow, S. D. Stearns, \Adaptive signal pro-

cessing", Prentice-Hall, 1985.


