
MEMORY EFFICIENT PROPAGATION-BASED ALGOTITHMS FOR
INFLUENCE ZONE TRANSMISSION

C. I. Cotsaces and I. Pitas

Department of Informatics
University of Thessaloniki

Thessaloniki 540 06, GREECE
E-mail:pitas@zeus.csd.auth.gr

ABSTRACT

The influence zone transform is a fundamental tool in mor-
phological and qualitative digital image processing. Be-
cause of its inherent geodesic properties, it is most efficiently
computed using propagation front or grassfire based meth-
ods. However, when the image processed is too large to be
contained in available memory, the random access nature
of these algorithms makes them exceptionally inefficient.
In order to alleviate this problem, we have developed two
algorithms that greatly reduce the memory requirements of
the transform. The first is designed specifically for com-
puting the influence zone transform on surfaces, without
storing the volume enclosing the surface. The second per-
forms the transform using only the propagation fronts, and
without storing any part of the region that is being pro-
cessed. Both methods use much less memory than the ones
in the literature, and thus enable the transform to be per-
formed on much larger images than before. However, since
all three algorithms use a significant number of set-access
operations, they are considerably slower that their classical
counterparts. Several techniques have been developed in
this work in order to minimize the effect of these set opera-
tions. These include fast search methods, double propaga-
tion fronts, directional propagation, and others.

1. INTRODUCTION

The concept of distance [1] is fundamental to most areas of
image processing and analysis. The geodesic distance func-
tions are particularly useful in many tasks that require the
description of distance within a specific region. There are
a number of methods that can segment an image according
to a distance criterion. Among the simplest of these is the
influence zones transform [2], which classifies points of the
image according to their geodesic distance from a predefined
number of markers. It is commonly accepted that the above
method is by far best performed by propagation fronts.
Here we shall concentrate on the use of propagation-based
algorithms on images that cannot fit in available memory.
Such are the three-dimensional images, whose third dimen-
sion greatly increases the image size. Three dimensional
images are used mostly in biomedical applications [?], but
also in geophysics, in industrial quality control and else-
where. Large images are also met where exceptionally high
resolution is required, as in digital photography, topography

and geodesy, and in other applications. In the following the
description of the algorithms will be given for the case of of
3-D images. However, the algorithms are equally applicable
in two or multiple dimensions.

When processing large images, it is impossible to keep
the entire image in the computer memory (RAM). Usually,
the image is stored in the permanent storage medium (mag-
netic disk, WORM, CDROM, network storage) and the al-
gorithm reads parts of the image that are needed in the com-
putation. The part of the image that is read each time has
to be small enough to fit in available memory. Each point
in the image is read as many times as the algorithm pro-
cesses it. However, seek time exceeds read time by orders of
magnitude, so it is important to read the data sequentially,
when this is possible. t is also important that each point
of the image be read as few times as possible. Most image
processing transforms are local, and therefore can be im-
plemented by sequential algorithms [6]. These process the
image using a predefined scanning order. Consequently the
image may be read from the permanent storage medium in
segments that have size equal to the available memory, thus
minimizing the delay caused by the seek operations. How-
ever, in propagation-based methods for the influence zones
transform there is no predefined order for processing the
image. Therefore, the use of propagation front algorithms
in large images presents serious problems.

In the following, we shall present two algorithms that
solve the above problems by minimizing memory require-
ments. First, in Section 2, the theoretical foundations of
the influence zones transform are briefly reviewed. Then
the existing algorithms are described. In Section 3, an algo-
rithm designed to perform the influence zone transform on
surfaces or other regions of interest is presented. in Section
4, we describe a second algorithm which processes complete
domains without the storage of the underlying image, but
only using the propagation fronts.

2. THEORETICAL BACKGROUND AND
ALGORITHMS

2.1. Basic definitions

Let D denote and image region D ⊂ Zn. A path of length
n in D is defined as a sequence of points (p0,p1, . . . ,pn),
pi ∈ D such that pi+1 is adjacent to pi. The discrete

geodesic distance from point p to point p′ is defined as
the minimum length of all paths starting at p and ending
at p′ and will be denoted dist(p,p′). Furthermore, the
distance from a set S ⊂ D to a point p is defined as the
minimum of all distances from points of S to p. We define
a growth of S within D as the set S(1) = S ∪ G(1) where
G(1) = {p ∈ D − S, p ∈ NC(p

′), p′ ∈ S}. It contains only
all points that are adjacent to S. The n-th growth of S,
S(n) is the growth of S(n − 1). Similarly, it contains all
points that have a distance of n from S. In morphological
terms, if the connectivity C is seen as a structuring element,
the n-th growth of set S is expressed as (S ⊕ nCs)− S.

2.2. Influence zone transform

Supposing that there are m sets S1, . . . Sm, Si ∈ D,Si ∪
Sj = 0, i 6= j (called markers), we define the influence zone
of Si as the set:

IZD(Si) = {p ∈ D, dist(Si,p) < dist(Sj ,p), ∀j 6= i}

The skeleton by influence zones of D is defined as:

SKIZD = {p ∈ D : ∃i 6= j, dist(Si,p) = dist(Sj ,p)}

A point p ∈ D belongs to IZD(Si) if and only if:

p ∈ Si(n), p 6∈ Sj(m), ∀j 6= i, ∀m ≤ n

By defining as D(n) = {p ∈ D, ∃i : p ∈ Si(n), 6∃j : p ∈
Sj(m) m > n}, it is clear that if p ∈ D(n), p ∈ SKIZD
then for all p′ such that p′ ∈ NC(p), p′ ∈ D(n + 1) hold
that p′ ∈ SKIZD. Thus, the influence zone transform
can yield very thick skeletons. It is consequently neces-
sary to modify its computation in such a way as to mini-
mize the number of skeleton points without sacrificing con-
sistency. This can be achieved by modifying D, defining
D′(n) = D(n) − SKIZD(n) and calculating D(n + 1) us-
ing D′(n). This effectively eliminates the effect described
above, without altering the classification of points already
in influence zones.

2.3. Algorithms using propagation fronts

There are many algorithms for computing the influence
zones, some of them parallel, other sequential. The fastest,
though, are those that use propagation fronts (also called
grassfires or wavefronts) to process each point in D only
once, that is at the time a zone’s growth reaches it. These
propagation fronts are implemented by a data strucure (queue,
list, stack, array) that stores all points in the edge of the
influence zone. In the following we shall refer to that struc-
ture as a propagation front, without specifically stating how
it is implemented.
These algorithms have the following steps:

1. Label the points of the influence zone of each marker
Si with a unique label in a label image.

2. Put the points of each marker in the propagation
front.

3. For each top point of each propagation front, find
all adjacent points that are not labeled in the label
image, put them in the propagation front and label
them.

4. Remove each point from a propagation front after it
has been processed, then go to step 3.

3. INFLUENCE ZONE TRANSFORM ON
SURFACES AND OTHER REGIONS OF

INTEREST

In various applications in image processing, graphics and
other fields, it is often necessary to perform a geodesic in-
fluence zone transform on a surface. For example, this is the
case when computing the Delauney triangulation of a sur-
face [8], based on previously calculated geodesic influence
zones (Voronoi tesselation).
However, in the case of the algorithms described in Sec-

tion 2.3, in order to store the surface in RAM, the storage of
the enclosing rectangular volume is needed. If the surface is
not approximately planar, the size of the volume that needs
to be stored in memory exceeds the size of the surface by
orders of magnitude. Thus, the volume containing a sur-
face may be too large to fit in available memory, although
the surface itself is not. Because the transformation is per-
formed on an image domain too large to fit in memory, the
performance of the classical algorithms drops drastically.
The proposed solution to this problem is to store only the
surface points, and not the whole volume.

3.1. Storage of the region of interest

The most common method to represent an image or a vol-
ume is in the form of a bitmap — an array which contains
the image information, whether it is greyvalues or labels.
However, because of the one-to-one correspondence between
memory and image, the shape of a region stored as a bitmap
can only be a parallelepiped. Thus, in order to store an ar-
bitrarily shaped region or surface, this method will need to
be abandoned and alternative ones be sought.
The obvious method for the representation of an arbi-

trarily shaped point set is to store each point separately,
defining it with its coordinates and value, in an array. The
disadvantage of this method is that accessing the value of a
point, given its coordinates, requires a search through the
entire image region that is stored in memory. The solution
that is applied to solve this problem is two sided. Firstly,
the minimization of the seek time of a point in the image
is attempted. Secondly, ways to limit the search operations
of the algorithm are sought.
In order to minimize the seek time of a point in a region

stored in an array of points in coordinate form is to sort this
array, and then to perform sorted search operations on it.
The ordering that is going to be used in the following is the
one commonly used in the storage of images. In the three-
dimensional case we sort first by the z-coordinate, then by
the y-coordinate and then by the x-coordinate. Hence, this
ordering will be called the basic order. It will be shown
that this choice of ordering will be beneficial because of its
correspondence with the way images are stored.

3.2. Use of double propagation fronts

The only image access operations performed by the propa-
gation front based algorithm are those that find the image

points adjacent to a propagation front point and, depending
on their labels, may add them to the propagation front and
label them accordingly. Since the size of a propagation front
is much smaller than the size of the image region, search-
ing for a point in it is much faster than searching for it in
the image. This only holds if the points in the propagation
front are sorted, facilitating search operations of logarithmic
computational complexity. Thus, if the points in the cur-
rent propagation fronts are sorted before the propagation
begins and each point adjacent to them is sought among
them before being sought in the image, significant perfor-
mance gains can be achieved. In order to reject points from
previous propagations, the immediately previous propaga-
tion fronts must be kept, and points must be searched in
them as well as in the current propagation fronts. These
previous propagations constitute what we will call the sec-
ond or backup level of the propagation fronts.
So, the final method used for the minimization of search

operations on the entire image region is storing the two
levels of the propagation fronts. Thus, each point adjacent
to a point that belongs to the current propagation front is
first sought in these two levels of the propagation fronts and,
if it is not found there, it is sought in the image. On average,
half of these adjacent points are found in the propagation
fronts and the rest must be searched for both in the image
and in the propagation fronts. Thus, the speed of this part
of the algorithm is effectively doubled.

5

10

15

20

25

1 4 16 64 256 1024 4096 16384 65536

se
co

nd
s

markers

Processing time of algorithm

Figure 1: Processing time for the domain storage algorithm.

3.3. Results

A test image was created in order to verify the algorithm
experimentally. It consists of a spherical surface having a
radius of 127 enclosed in a 256× 256× 256 volume. In this
sphere a number of point markers were randomly inserted,
ranging in number from 2 to 65536. The tests were per-
formed on a PC with a Pentium processor at 90 MHz and
32 Mbytes of RAM, running Microsoft Windows NT Server.
The speed of the algorithm remained constant at 13 to

14 seconds for most of the tests and only rse significantly
when using more than 16384 marker points, as can be seen
in Figure 1. Above that number, the number of markers

4

8

16

32

64

128

256

512

1 4 16 64 256 1024 4096 16384 65536

ite
ra

tio
ns

markers

Algorithm iterations

Figure 2: Maximum number of iterations for the domain
storage algorithm.

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

1 4 16 64 256 1024 4096 16384 65536

po
in

ts

markers

Average front points
Maximal front points

Figure 3: Maximum and average number of points in prop-
agation fronts for the domain storage algorithm.

becomes comparable to the number of points in the sur-
face, and the entire algorithm degenerates. The execution
time remains constant although the number of iterations de-
creases with the number of markers as can be seen in Figure
2, meaning that the time spent on each iteration increases
with marker number. he number of points in the propaga-
tion fronts increased with marker number, but they never
exceeded the number of points in the region, as can be seen
in Figure 3. In most cases, the average number of points in
the fronts remained well over one order of magnitude below
the number of domain points.
If we assume a uniform distribution of markers on the

image, the number of points belonging to each influence
zone can be approximated as Pzone = PRegion/n where n
the number of markers and PRegion the constant number
of points in the region. If the region is modeled as a vol-
ume, the radius of the influence zone is r = k1

3
√
Pzone.

Therefore the number of points on the front is Pfront =

k2(PRegion/n)
2/3, and thus the total number of points in

fronts Ptot = k3 3
√
n. If the region is modeled as a plane,

the radius is r = k4
√
Pzone and the number of points in

fronts is Pfront = k5
√
PRegion/n and the total number

Ptot = k6
√
n. Because the region used is almost exactly

the surface of a sphere, the results for the above quanti-
ties should be closer to that of the planar case. Indeed
the measurements shown in Figure 3 were modeled by the
least-squares method to be as follows:

• The maximum number of points stored in propaga-
tion fronts during the execution of the algorithm is
modelled by max(Ptot) = kn

0.47.

• The average number of points stored in propagation
fronts during execution was modelled by avg(Ptot) =
kn0,40.

Also, again as expected, the number of propagation steps,
as shown in Figure 2 was modelled as max(r) = kn−0,42.

4. INFLUENCE ZONES TRANSFORM
WITHOUT IMAGE STORAGE

The algorithm presented in Section 3.1 is of no help in the
case that the area to be segmented is a large image. In this
case, the need to store the influence zone labels leads to
serious performance problems. The only way to avoid these
problems is to avoid the storage of the image in memory
and to store only the propagation fronts and compute the
transform solely with operations on them.
Unfortunately, without the image, there is no simple

way to know whether a point belongs to the skeleton or to
an influence zone (and to which) or to neither. The influ-
ence zone algorithm requires that each point adjacent to a
propagation front point is labeled as an influence zone or
skeleton point and, accordingly, is appended to the propa-
gation fronts or not. Thus, we have to find some other way
to determine whether such an adjacent point has already
been visited by the propagation fronts, or is a new propa-
gation front point or is a collision point that belongs to the
skeleton.

4.1. Determining collisions

The first step towards determining the status of a point
adjacent to a propagation front is to establish whether it
has already been visited by that propagation front. As de-
scribed in Section 3.2, a way to achieve this is to use double
(or backed-up) propagation fronts. Because the mainte-
nance and operation of the double fronts is inexpensive in
both memory and computation terms, and because they do
not require image reference operations, they are a natural
choice for this task.
However, the double fronts cannot determine whether

a point has been visited by another propagation front, or
whether it is the point where two propagation fronts collide.
Having determined that a new point has not been already
visited by its respective propagation front, an way must
be found to check whether it appears in any other new
point set or propagation front. In order to achieve this, a
minimum heap is used [9]. The heap’s function is to extract
quickly the minimum element it contains, and to accept
new elements in any order. The computational cost for the
extraction of the minimum of the heap is O(log(i)), and

the cost for the insertion of an arbitrary element is also
O(log(i)) where i is the number of elements in the heap.
The heap is used to receive the points from the prop-

agation fronts and the sets of new points that are to be
appended to each of them. The size of the heap is 2n points
and the computational cost of the insertionO(log(n)), where
n is the number of markers. This is because both the fronts
and the new point sets are sorted on the basic order be-
forehand. Thus, if their first points are inserted into the
heap, the next point extracted from the heap will be the
minimum of all the points left in them.
Thus, by successively extracting points from the heap,

and then inserting into the heap the next point from where
the extracted point originated from, we can guarantee to
receive all the points in the basic order. Duplicate points
will be in succession and can be identified as such. If there
is a number of identical points from different new point
sets, and there is no point from a propagation front among
them, it means that this point is a skeleton point. In this
case, all the points are removed from their respective sets
and appended to the set of skeleton points. If there is a
point originating from a propagation front among a num-
ber of identical points, all other points are removed from
their respective sets. Thus, the determination of the colli-
sions between fronts can be achieved with only O(log(n))
computational complexity per point.

4.2. Skeleton maintenance and result output

In order to have a proper computation of the influence zones
transform, the skeleton points must be properly computed.
Because the propagation step does not continue through
skeleton points, and because of the geodesic nature of the
transform, all skeleton points need to be kept in order to en-
sure the correct propagation of the fronts. So, the skeleton
points found by using the heap at the end of each propa-
gation step are temporarily kept in a list. When the heap
has processed all points this list is sorted and merged into
an array containing all skeleton points found in previous
propagation steps. This array is then used as an input to
the heap, in order to determine further collisions.
Also, the fact the image is not kept in memory means

that the result is not explicitly available. However, it is pos-
sible to store the result of the transformation to disk, as the
algorithm is running. This is best done at the end of each
propagation step, when all points pass through the heap and
receive their final labels. At that time, the points that have
been reached in the current propagation step are written,
in coordinate form, to intermediate disk file corresponding
to their z-coordinate. Because the points are coming out of
the heap in the basic order (which was chosen to be based
first on their z-coordinate), they are written to disk contin-
uously and, therefore, without delays. After the end of the
algorithm, these files are read and the points they contain
are written to their final positions in the output file, which
is in bitmap format.

4.3. Results

We have used our algorithm to perform the influence zone
transform on a 256×256×256 image, which contained from
2 to 16385 markers. The machine used for the tests was a

2000

2500

3000

3500

4000

4500

5000

5500

6000

1 4 16 64 256 1024 4096 16384

se
co

nd
s

markers

Processing time of algorithm

Figure 4: Processing time for the fronts-only algorithm.

32

64

128

256

512

1024

1 4 16 64 256 1024 4096 16384

ite
ra

tio
ns

markers

Algorithm iterations

Figure 5: Maximum number of iterations for the fronts-only
algorithm.

PC with a Pentium processor at 90 MHz and 64 Mbytes of
RAM, running Microsoft Windows NT Server. The perfor-
mance of the algorithm was satisfactory, rising very slowly
for small numbers of markers, but faster when the number
of markers goes above 1024. The memory requirements of
the fronts were naturally small, but greatly increased with
marker density. Again, the number of iterations were de-
pendant on the number of markers. The above are demon-
strated in Figures 4, 5 and 6.

5. CONCLUSIONS

We have presented two algorithms to reduce greatly the
memory requirements of the influence zone algorithm, thus
making them computable on large images. The first of these
algorithms which computes the influence zone transform
on surfaces, was demonstrated to have in satisfactory speed
and to achieve very large memory savings. The performance
of the second, which uses only the propagation fronts to per-
form the transform, is somewhat less satisfactory in speed,
but still achieves significant memory gains with reasonable

 65536

 131072

 262144

 524288

1048576

2097152

4194304

8388608

1 4 16 64 256 1024 4096 16384

po
in

ts

markers

Average front points
Maximal front points

Figure 6: Maximum and average number of points in prop-
agation fronts for the fronts-only algorithm.

slowdown.

6. REFERENCES

[1] A. Rosenfeld and J. Pfalz, “Distance Functions on Dig-
ital Pictures”, Pattern Recognition, vol. 1, no. 1, pp.
33–61, 1968.

[2] C. Lantuejoul and F. Maisonneuve, “Geodesic Meth-
ods in Quantitative Image Analysis” Pattern Recogni-
tion, vol. 17, no. 2, pp. 177–187, 1984.

[3] F.P. Preparata and M.I. Shamos, Computational Ge-
ometry, Springer-Verlag, 1985.

[4] G. Borgefors “Distance Transformations in Digital Im-
ages” Computer Vision, Graphics, Image Proc., vol.
34, pp. 344–371, 1986.

[5] I. Pitas, “Performance Analysis and Parallel Imple-
mentation of Voronoi Tessellation Algorithms Based
on Mathematical Morphology”, IEEE Pattern Anal.
Machine Intel., submitted for publication, April 1996.

[6] I. Pitas, Digital Image Processing Algorithms, Prentice
Hall, 1993.

[7] B.J.H. Verwer, P.W. Verbeek and S.T. Dekker, “An
Efficient Uniform Cost Algorithm Applied to Distance
Transforms”, IEEE Trans. Pattern Anal. Machine In-
tel., vol. 11, no. 4, pp. 425–429, April 1989.

[8] L. Vincent, “Graphs and Mathematical Morphology”,
Signal Processing, vol 16, pp. 365–388, 1989.

[9] M. Atkinson, J. Sack, N. Santoro and T. Strotthotte,
“Max-Min Heaps and Generalized Priority Queues”,
Communications of ACM, vol. 29, no. 10, pp.996–1000,
1986.

[10] P. Salembier and A. Oliveras, “Practical Extensions
of Connected Operations”, Math. Morph. and Appl.
to Image and Signal Proc., P. Maragos et al., Eds.
Kluwer, pp. 97–118, 1996.

