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ABSTRACT

In this paper, we propose a spatially adaptive image

restoration algorithm, using local statistics. The lo-

cal variance, mean and maximum value are utilized

to constraint the solution space. These parameters

are computed at each iteration step using partially re-

stored image. A parameter de�ned by the user de-

termines the degree of local smoothness imposed on

the solution. The resulting iterative algorithm exhibits

increased convergence speed when compared with the

nonadaptive algorithm. In addition, a smooth solu-

tion with a controlled degree of smoothness is obtained.

Experimental results demonstrate the capability of the

proposed algorithm.

1. INTRODUCTION

When an image is formed or recorded by an imag-

ing system, the image may be degraded due to uni-

form motion, defocusing, long-term atmosphere turbu-

lence, or any combination of them. The blurred image

may be more seriously degraded by the additive noise

which comes from the image formation process, trans-

mission medium, recording process, or any combination

of them.

A typical degradation model is of the form [2, 6]

y = Dx+ n; (1)

where the vectors y; x; n are of sizeMN�1, and repre-

sent the lexicographically ordered observed image, orig-

inal image, and the additive noise, respectively, of size

M�N . D is the degradation matrix of sizeMN xMN

which may represent a spatially invariant or spatially

varying point spread function.

Least-squares regularization has been used for ob-

taining solutions to Eq. (1). According to the regular-

ization approach, the following functional is minimized

with respect to x [2, 7]

M(x) = jjy �Dxjj2 + �jjCxjj2; (2)

where �, the regularization parameter, controls the

trade-o� between �delity to the data and smoothness,

and C represents typically a high pass operator.

The prior knowledge used in the formulation repre-

sented by Eq. (2) is that the original image is smooth.

Since such knowledge constraints the solution space,

meaningless solutions can be avoided. However, this is

a global requirement and therefore not very e�ective

in terms of local smoothness. The solution of Eq. (2)

represents a spatially invariant �lter.

In this paper, an adaptive image restoration algo-

rithm using local smoothing constraints is proposed.

We follow the formulation represented by Eq. (2) and

propose to bring knowledge about the local properties

of the original image into the restoration process, so

that prior knowledge and the spatial adaptivity are in-

corporated on the solution. The basic idea is to con-

strain locally the range of values the restored image

can take, leading to increased convergence speed of the

iterative algorithm and signal to noise ratio (SNR) im-

provement. The proposed algorithm di�ers from all

other spatially adaptive restoration algorithms proposed

in the literature (for a review see [6, 3]).

This paper is organized as follows. In section 2,

the iterative regularized image restoration is reviewed.

The proposed spatially adaptive image restoration al-

gorithm is described in section 3. Experimental results

are presented in section 4, and �nally conclusions are

reached in section 5.



2. BACKGROUND

The steepest descent iteration with a constant step size

(equal to 1) applied to (2) results in

xk+1 = xk + [DT y � (DTD + �CTC)xk ] = Txk: (3)

There exist various ways for determining the regu-

larization parameter � [4]. According to [5], the regu-

larization parameter is determined by partially restored

image at each iteration step,

�(xk) =
jjy �Dxjj2

� � jjCxjj2
; (4)

where � � 2jjyjj2.

Constraints can be imposed on the partially re-

stored image and can be incorporated into equation

(3). That is, iteration (3) takes the form

x̂k = Pxk; (5)

xk+1 = T x̂k = TPxk;

where P denotes a projection operator (or concatena-

tion of operator) of a signal onto a set of signals with

desirable properties.

3. ADAPTIVE IMAGE RESTORATION

ALGORITHM USING LOCAL

CONSTRAINT

In this section, we describe a way to choose a set onto

which the partially restored image in Eq. (3) is pro-

jected. In order to de�ne local smoothing constraint,

it is necessary to determine the parameters which de-

scribe the local properties of an image. In our work, we

use the local variance for local spatial activity and local

maximum intensity value. For the image xk(i; j), the

local mean mxk(i; j) and the local variance �2xk (i; j) at

coordinate (i; j) are de�ned by

mxk(i; j) = K

i+UX
m=i�U

j+VX
n=j�V

xk(m;n); (6)

�2xk(i; j) = K

i+UX
m=i�U

j+VX
n=j�V

[xk(m;n)�mxk(i; j)]
2; (7)

where K�1 = (2U + 1)(2V + 1) is the extent of the

analysis window which is symmetric about the point

(i; j). The local maximum value, xk;max(i; j), is simply

de�ned as

xk;max(i; j) = max
(m;n)2Si;j

xk(m;n); (8)

where Si;j represents the support region for determin-

ing the local maximum value at (i; j). In the exper-

iments, it is the same with analysis window used for

local mean and variance computation.

From Eqs. (7) and (8), the projection operator P

to the set expressing local smoothness is de�ned as

P (xk(i; j)) =

8>>>><
>>>>:

mxk(i; j)� L �B(i; j)

if xk(i; j) < mxk(i; j)� L � B(i; j);

mxk(i; j) + L �B(i; j)

if xk(i; j) > mxk(i; j) + L � B(i; j);

xk(i; j) otherwise;

(9)

where L is a threshold to be determined and B(i; j) is

equal to
x2
k;max

(i;j)

�2
x
k
(i;j)

. Smaller B(i; j) represents tighter

bound for at regions, resulting in an oversmoothed

image with most of the noise removed (the blur does

not change much the at regions of th image), while

larger B(i; j) (looser bound) for high activity. This is

in agreement with the noise masking property in areas

of high spatial activity of the human visual system [1].

4. EXPERIMENTAL RESULTS

n our experiments, we used the 256 � 256 pixels lena

image. The original image is degraded by 7x7 uni-

form motion blur and by 10 dB Gaussian noise. The

degraded image is shown in Fig. 1 We tested the pro-

posed algorithm for various signal to noise ratios (SNR)

and images. For evaluating the performance of the al-

gorithm, the improvement in SNR (dB) was utilized.

It is de�ned at the kth iteration step by

�SNR = 10 log10
jjy � xjj2

jjxk � xjj2
: (10)

The criterion

jjxk+1 � xk jj
2

jjxk jj2
� 10�5 (11)

was used for terminating the iteration.

For L = 0:001, the proposed algorithm converges af-

ter 9 iterations (�SNR = 3:05), while the nonadaptive

algorithm after 74 iterations (�SNR = �4:57). Figs. 2

and 3 show the restored images by iterations (3) and

(9) with the use of (4). When tighter bounds (smaller

L) are used, the convergence becomes faster. However,

the tighter bounds result in oversmoothed images. On

the basis of our experiments, 0:01 � L � 0:0001 is a

good range with respect to convergence speed and per-

formance. Figures 4 and 5 show the pixels outside and

inside the region de�ned by the bounds in Eq. (9).

Black pixels denote the location where the intensity



values are below the lower threshold, white pixels the

location where the intensity values are above the up-

per threshold, and gray pixels the location where the

intensity values are in between the two bounds. Clearly

by comparison Figs. 4 and 5 considerably more pixels

do not satisfy the constraint at the beginning of the

iteration than at convergence. Figs. 6 and 7 respec-

tively shows comparison of the convergence rates and

the mean squared error between the nonadaptive and

adaptive algorithms.

5. CONCLUSIONS

In this paper, we propose an adaptive iterative regular-

ized image restoration algorithm using local smoothing

constraints. Each pixel in an image is projected onto

local smoothing set which is determined by the local

mean, variance, and maximum intensity value of the

partially restored image. These parameters are utilized

in de�ning the convex set. We are currently investigat-

ing the use of the local smoothness constraint in the

blind deconvolution problem.
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Figure 1: Noisy blurred image (7x7 uniform blur, 10

dB Gaussian noise)

Figure 2: Restored image by nonadaptive approach; 74

iterations, �SNR = �4:57 dB

Figure 3: Restored image by proposed algorithm; 9

iterations, �SNR = 3:05 dB



Figure 4: Black pixels : intensity below the lower

bound ; white pixels : intensity above the upper bound

; gray pixels ; intensity between the bounds of Eq. (9)

; iteration 1

Figure 5: Black pixels : intensity below the lower

bound ; white pixels : intensity above the upper bound

; gray pixels ; intensity between the bounds of Eq. (9)

; iteration 9

Figure 6: Comparison of convergence rates

Figure 7: Mean squared error comparison


