
STRUCTURING ELEMENT DECOMPOSITION BY TREE SEARCHING

M. Razaz and D.M.P. Hagyard

School of Information Systems,
University of East Anglia,

Norwich, England
Email: mr@sys.uea.ac.uk

ABSTRACT

Morphological image processing is a technique
that is becoming increasingly important for a wide
range of image processing tasks. The two primitive
operations, dilation and erosion, expand or contract
objects of an image in a manner described by the
structuring element, commonly a binary image. The
shape of the structuring element allows fine control
over the shapes processed by the operation. The time
taken for morphological operations to complete is
proportional to the number of pixels in the structuring
element. By breaking the structuring element down
into pieces that are applied sequentially to an image the
computation time for the morphological operations can
be reduced. This paper examines our implementation
of the Zhuang and Haralick tree search decomposition
algorithm and presents results of timing experiments
that show the time taken for decomposition rises
exponentially with the number of pixels in the
structuring element.

1. INTRODUCTION

The morphological operations as described by
Serra [1] are based on hit and miss operations on binary
images. The result of a morphological dilation is the
set of locations where the structuring element set could
be placed such that it would intersect with objects in the
image set. The result of a morphological erosion is the
set of locations where the structuring element could be
placed such that it would not intersect with any pixels
not in the input image set. In algorithmic terms a
dilation is carried out by scanning an image and, for
every pixel in that image, examining the neighbourhood
of that pixel as defined by the structuring element, to
see if it contains a pixel belonging to an object in the
image. This has the result of making objects in the
image swell, since pixels near objects may have the
edge of objects in their neighbourhood and thus be
included in the output set. Erosion makes objects

shrink - since pixels within an object that are close
enough to the edges of the object to have a background
pixel in their neighbourhood, as defined by the
structuring element for the operation, will not be
included in the output set. The size of the
neighbourhood to be examined equals the size of the
structuring element used in the operation, therefore the
time to perform an operation is directly proportional to
the size of the structuring element set.

There are a number of approaches to speeding up the
binary morphological techniques. One route is to
improve the operation of the low level algorithm. This
can be done by changing the data structures to improve
the operation of the algorithm, or by making the
algorithm examine and manipulate the data in a more
efficient manner.

The second approach for speeding up binary
morphological operations is to perform structuring
element decomposition (SED). It is possible to
decompose a structuring element into a series of shapes
that can be morphologically added together to
reproduce the original shape. The structuring elements
that make up the decomposition may be applied to an
image successively and can reduce the time taken for
the overall operation. It is also possible to decompose a
shape such that its component parts can each be applied
separately to the image and then combined set
theoretically to produce the same result as the original
structuring element. This allows a complex structuring
element to be broken down into a set of simpler shapes
that may have optimised implementations.

Various SED methods exist in the literature, see for
example [2-8]. Which decomposition algorithm is the
most suitable depends on the hardware platform being
used for its implementation. Specialised hardware
platforms such as Cytocomputer and Massively Parallel
Machines, have been designed for fast implementation
of morphological operations. The limitations on the
size, shape and connectivity of structuring elements that

these machines can efficiently handle have greatly
influenced the development of different decomposition
algorithms. Zhuang and Haralick [8] have presented an
elegant SED algorithm using tree searching. Despite its
mathematical elegance there is no detailed
implementation and assessment of this algorithm in the
literature. The Tree Search Decomposition Algorithm
(TSDA) is an implementation and extension of this
algorithm.

2. TREE SEARCH DECOMPOSITION ALGORITHM

The search based method as described by Zhuang and
Haralick [8] decomposes a structuring element down
into a series of translate and add operations. Each of
these operations is equivalent to a sparse structuring
element containing two elements, one at the origin, the
other at a position relative to the origin equal to the
vector of the translation. The two member structuring
elements can be applied in any order since
morphological dilation is commutative.

The question the algorithm attempts to answer is this:
Given a structuring element S, determine the smallest N
and corresponding components H1, H2,...,HN such that

S = H1 � H2 � ... � HN (1)

If the structuring elements contain only two members,
then they are referred to as 2-point sets. If all of the Hn

are 2-point sets then the resulting decomposition is said
to be a 2-point decomposition. A canonical 2-point
decomposition is one where all of the Hn’s contain the
origin. These 2-point sets can be performed with only a
shift and AND operation for an erosion, or a shift and
OR operation for dilation. This leads to very efficient
hardware implementations, which is what the
decomposition was designed for.

 The decomposition of S is found by a combinatorial
search process that constructs a tree of possible shift
and add operations from a start node. The search is
recursive. At each m-level node there is a partial
decomposition H1 � H2 � ... � Hm. The algorithm

creates child nodes which have one more translation, H1

� H2 � ... � Hm � Hm+1 such that the decomposition

result still remains within the confines of the structuring
element to be decomposed. Any node for which there
is no translation t such that (H1 � H2 � ... � Hm)t ⊆ S

can have no children and therefore dies. If, at any
level, all of the nodes die, then the search has failed and
S has no decomposition. If at a node, S 8 (H1 � H2 �

... � Hm) = a single pixel, then this m-level node is a

leaf node. The path from this m-level node to the root
node is one possible decomposition of S. The optimal
decomposition of S is the shortest path from the root
node to a living leaf node. The optimal solution is
easily found by a breadth-first search; it will be the first
living leaf node located.

The root node will contain no partial decomposition,
but will have a large number of children. The children
of the root node are the vectors which can be between
each possible pairing of the members of S. This large
number is reduced by the fact that repeated vectors are
ignored, however the search method is very nearly an
exhaustive search. Methods to speed up the algorithm
involve: i) reducing the degrees of freedom allowed in
generating the children for each node and ii) forward
checking the children to eliminate.

To describe the operation of the tree search it is useful
to detail the operation of the algorithm at an arbitrary
location part of the way down the tree. When a node at
level m is born it is given a name Jm, which is the mth
structuring element, or translation, in the decomposition
of S. Apart from a name it is also given a heritage from
its parent consisting of the following:

i) a restricted sequence Lm which contains all of
node Jm’s future generation descendent name
possibilities;

ii) the partial decomposition Km = J1 � ... � Jm;

iii) the undecomposed part of S, Tm = S 8 Km.

The production of children is accomplished by scanning
through the list Lm and, using the forward checking,
eliminating all those members that cannot be part of a
decomposition. The result of this elimination is a list
L* m, containing a list of J’s that are valid members of a
possible decomposition. For each member of the list
L* m a child node is generated, and is given the heritage
as defined above. Lm is constructed from the list of
successful possible children from the parent node, L*m-

1. The elements of L*m-1 are { J(m-1)1, J(m-1)2, ..., J(m-1)n},
therefore the parent node, Jm-1, has n children. The
heritage given to each of the child nodes consists of one
of the names taken from the list L*m-1 and Lm, which
consists of all of the elements of L*m-1 that are greater
than or equal to Lm. For example the kth child of Jm-1

will have a list of possible children, Lm, which consists
of { J(m-1)k, J(m-1)k+1, ..., J(m-1)n}.

The method of forward checking is to see if S is closed
with respect to the current decomposition when the

prospective child (J, selected from Lm) has been added
to it, i.e.:

S = S ο (Km � J) (2)

where ο is the opening operation. In terms of the
heritage (2) can be written as

S = (Tm 8 J) � (J � Km). (3)

It is more efficient to test (3) in several parts. It follows
directly [8] that if S = (Tm 8 J) �YY (J � Km) holds then:

#S ≤ #(Tm 8 J) . #(J � Km) (4)

where #(S) denotes the number of members in set S. In
the first step of the forward checking, Tm 8 J and J �

Km are computed and the inequality checked. If the
inequality is not satisfied then this J will not be put into
the list L*m and the next member of Lm is tested. If the
inequality is valid then the following relation is
checked:

Tm = (Tm 8 J) � J (5)

If relation (5) is true then J has passed the checking and
is put into L*m because:

(Tm 8 J) � J � Km = Tm � Km = S. (6)

If (5) is not true then the element J has a second chance.
The dilation (Tm 8 J) � (J � Km) is performed and

compared for equality with S. If this is successful then
J is put into L*m, otherwise J is discarded. Once the list
L* m has been generated, the work on this node is
complete and the new children should be spawned.

The partial decomposition for the child, Km+1, is
generated by dilating the partial decomposition of the
current node, Km, by the J represented by the child being
generated. Similarly Tm+1, the undecomposed part of S
for the current node, is generated by eroding the current
value Tm by the J which is represented by the child
currently being generated. It need not be the case that
these values are generated after the forward checking
stage. They may be generated during the testing and
stored until needed.

A node at the end of a decomposition, an end-node,
occurring on level N is identified when #TN = 1. At this
point the single member of TN is the q from the
decomposition:

S = {q} � J1 � ... � JN. (7)

An end-node will produce no children. Nodes that
produce no children, but that have not reduced the
undecomposed part of S down to one element, are dead
branches.

To find an optimal decomposition, a breadth-first tree
search is carried out that scans through the levels of the
tree from the root to the leaves. The first end-node
found is the optimal decomposition because it will be
the one with the shortest path back to the root node.
Any other end-nodes found on the same level will also
be optimal. A second form of the algorithm was
implemented where the tree was built up in a breadth-
first manner. The construction of the tree was halted on
identifying the first end-node. Since the tree is
constructed in a breadth-first manner the first end-node
found is the most optimal decomposition. The second
implementation allowed the algorithm to finish without
having to construct the entire tree.

3. RESULTS

Testing for correctness was carried out by using
the same input bitmap as in the Zhuang and Haralick
paper example [8], printing out the contents of the
entire tree and checking that it corresponded to the tree
given in the paper. A second test was to examine all
the possible outputs from a run, and manually check
that they produced valid decompositions. Once these
tests were performed the tree printing functions of the
software were disabled and memory use optimisations
added to the code.

The decomposition algorithms were tested using a
series of square structuring elements with sizes ranging
from 2 x 2 pixels to 15 x 15 pixels. The timing results
are shown in Figure 1. The shape of the graph shows
that as the size of the structuring element gets larger,
the time taken for the algorithm to find the optimal
solution increases at an exponential rate. The reason
for the rapid increase in time to decompose structuring
elements can be seen when the number of nodes in the
generated tree search is examined, see Figure 2.

The maximum size of a structuring element that can be
decomposed by the algorithm is 13 x 13 pixels. If the
tree is built in a breadth first manner and construction
halted when the first solution is found, then a slightly
larger image, 14 x 14 pixels, can be handled. At sizes
larger than these the program will run out of memory on
the current system. It should be noted that the
important factor in the size of the search tree is the
number of possible translations between different pixels

on the bitmap. This increases as the number of pixels
grows. Therefore, the dimensions of the bitmap are of
secondary importance to the number of pixels in the
image.

Figure 1. Time to Decompose a Square
structuring element

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14
Width of square Structuring element

T
im

e
/s Full Tree

Single Solution

Figure 2. Nodes in tree against Height and Width
of Structuring Element

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 2 4 6 8 10 12 14

Width of square Structuring Element

N
od

es

Complete Tree

Incomplete
T

The graphs in Figures 1 and 2 were entered into a curve
fitting program. All of them closely fitted a logarithmic
graph of the form:

y A e
x B

C= +
−

((ln))2

where y is either time or the number of nodes in the
tree, x is the height or width of the structuring elements
and A, B and C are fitting parameters. The curve fitting
program estimated that, on a DECstation 5000/200
running Ultrix, with a speed spec mark of 20, a 20 x 20
pixel structuring element would produce a tree with a
maximum of 1,959,636 nodes and would require
approximately 82 hours to complete.

The initial tests of the decomposition algorithm were
performed on simple shapes that were known to be
decomposable. These were squares and other lozenge
shapes. On examining the output of the algorithm it
was possible to see that the output translations of the
structuring element were closely connected to the edges
of the input structuring element. The translations in the
decomposition were either horizontal, vertical or in one
of the two diagonal directions. If all the translations
with the same direction were applied to a single pixel
they produced a straight line that was the same length
as the edge in that direction on the structuring element.
For example, an octagonal structuring element
contained within a 15 x 15 pixel square will produce the
following decomposition:

{{3,3}, {-3,3}, {0,2}, {1,1}, {1,1}, {0,1}, {0,1}, {-1,1},
{-1,1}, {2,0}, {1,0}, {1,0}}.

This can be broken down into:

{{3,3}, {1,1}, {1,1}}, {{-3,3}, {-1,1}, {-1,1}}, {{0,2},
{0,1}, {0,1}}, {{2,0}, {1,0}, {1,0}}.

The first batch of three translations will produce the 6
pixel long down diagonal, the next batch of three
translations will produce the 6 pixel long up diagonal,
and next two batches of 6 will produce the vertical and
then horizontal 5 pixel edges. The above
decomposition took 493 seconds to generate.

The lengths of the translations in each direction
comprise the most efficient method of creating a line of
correct length. There is a pattern to the magnitudes that
can be seen if a large enough length of pixels can be
decomposed. If a straight line of 20 pixels is
decomposed, the output is as follows

{{10,0}, {5,0}, {2,0}, {1,0}, {1,0}}.

The order of the magnitudes can be calculated by
dividing the length by 2 and rounding down. This value
is the length of the first translation. Subtracting the first
translation length from the initial length gives the
length to be divided by 2 in the next iteration of the
algorithm. This division and subtraction continues until
the current length can no longer be divided by 2. Using
this algorithm, and a routine to create the partial
Freeman chain of a shape, a program was written to
create a series of shift and add translations that would
be the same as a tree search decomposition of the input
structuring element. This program was only able to
decompose lozenge shape structuring elements, but
operated much faster. Since its complexity was
proportional to log to the base 2 of the length of the

edges it was possible to create the decomposition of a
255 x 255 square structuring element. This would have
been impossible using the TSDA. These pseudo-
decompositions were used to perform the timing
analysis of the morphological primitives using the
results of the decompositions.

Attempts were made to decompose more complicated
shapes but they were usually unsuccessful. A variety of
shapes were tested. Triangles, trapeziums, kites, and
most patterns of distinct repetitions failed. Some circle
shapes were successful, although testing of this was
limited to shapes that were small enough to be
processed. All the lozenge shapes that would work with
our Fast Morphology Transform (FMT) algorithm [9]
were successful. The lozenge shapes that would not
work with the FMT algorithm, i.e. shapes constructed
from diagonals with no horizontal or vertical
components, failed with the tree search decomposition
method.

In general, the tree search method will be able to
decompose any convex shape that has one degree of
rotational symmetry, i.e. any shape that can be rotated
180° and exactly map onto itself. If the structuring
element comprises a number of separate objects then a
decomposition is only possible if the element can be
constructed from a shape following the above criterion
that is cumulatively shifted and added to build up the
pattern.

4. CONCLUSIONS

The Tree Search Decomposition Algorithm is
mathematically very elegant, but it remains an
exhaustive search technique. TSDA can only
decompose shapes that can be generated by a series of
shift and add operations, such as convex, symmetric
shapes. These shapes can have edge directions that do
not follow the four 8-connected directions i.e.
horizontal, vertical, diagonally up and diagonally down.
The algorithm can also decompose structuring elements
consisting of groups of convex, symmetric shapes. All
the shapes would have to be identical, and in general
there would have to be 2x of them where x is a positive
integer. The shapes could partially or fully overlap,
possibly making odd numbers of shapes, or concave
shapes. Although we have shown that TSDA is very
slow it could be made more efficient if the method
decomposed structuring elements into larger shapes
than the two-member shift and add operations currently
used in our implementation. Possibly using an
exhaustive tree search method that looked for simple
shapes could be useful. Moreover it could be effective
to use a tree search method to generate a tree truncated

to a manageable size. The best decomposition from the
truncated tree could then be used to reduce the size of
the structuring element for a second pass with the
algorithm. This could be an effective method to work
around the memory problems associated with TSDA.

REFERENCES

[1] Serra, J. “Introduction to Mathematical
Morphology”, Computer Vision, Graphics and Image
Processing, Vol 35, pp 283-305, 1986.

[2] Xu, J., “Decomposition of Convex Polygonal
Morphological Structuring Elements into
Neighbourhood Subsets”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 13, No 2, pp
153-162, February 1991.

[3] Pitas, I., Venetsanopoulos, A.N., “Morphological
Shape Decomposition”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 12, No 1, pp
38-45, January 1990.

[4] Park, H., Chin, R.T., “Decomposition of
Arbitrarily Shaped Morphological Structuring
Elements”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 17, No 1, pp 2-15, January
1995.

[5] Park, H., Chin, R.T., “Optimal Decomposition of
Convex Morphological Structuring Elements for 4-
Connected Parallel Array Processors”, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Vol. 16, No 3, pp 304-313, March 1994.

[6] van den Boomgaard, R., Wester, D., “Logarithmic
Shape Decomposition”, Internal Report for Department
of Mathematics and Computer Science, University of
Amsterdam, The Netherlands, 1993.

[7] Pitas, I., Venetsanopoulos, A.N., “Morphological
Shape Decomposition”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol 12, No 1, pp
38-45, January 1990.

[8] Zhuang, X., Haralick, R.M. “Morphological
Structuring Element Decomposition”, Computer Vision,
Graphics and Image Processing, 35, pp 370-382, 1986.

[9] Hagyard, D.M.P., Razaz, M., Atkin, P., “A Fast
Algorithm for Computing Morphological Image
Processing Primitives”, Proc. IEEE Workshop on
Nonlinear Signal and Image Processing, 1997.

