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Abstract. Adaptation of the tap profile in subband 
adaptive system identification problems can further en- 
hance the efficient use of computational resources if im- 
plemented on a DSP with an otherwise too tight bench- 
mark performance. Here, we derive a generalization of 
previous work to extend tap-assignment algorithms to a 
new class of oversampled filter banks with non-uniform 
bandwidths and different subsampling ratios. We com- 
pare efficiency and adaptation results for this approach 
to the critically sampled case and a fuLlband identifica- 
tion with same complexity. 

1. INTRODUCTION 

For the identification of long impulse responses, as 
eg. found in acoustic echo control problems, often 
t.he achievable model may be limited to a truncated 
solution due to the computational benchmark of a 
DSP. While IIR filters offer lower complexity but can- 
not adequately match the nature of the problem (11: 
FIR subband adaptive filters (SAF) appeal through 
the advantages of reduced complexity, increased time 
represent,ation of the filter taps, and it.s parallel st,ruc- 
tnre. The subband approach further allows to exploit 
the spectral characteristics of the system to be iden- 
tified by appropriately distributing the computations 
over different subbands, eg. dedicat.ing longer filters 
and more computations to the low frequency range 
when modelling acoustic systems [2! 51. 

.4t a given complexit,y, we can perform the assign- 
ment of taps adaptively. This idea was first intro- 
duced by [6], with refinements in [12: 141. However. 
t,heir use of undecima.ted subband signals counter- 
acts the task of efficiency. In [15] we have demon- 
st.rated the improved system representation over full- 
band adaptive filtering when employing critical deci- 
mation, and presented a simplified adaptive tap pro- 
file algorithm. 

Critically sampled filter banks (FB) are free of re- 
dundancy and can be designed to have perfect re- 
construction (PR) property, bub suffer from aliasing 
between bands and require the use of cross terms 
to compensate for the leakage of information at, the 
band edges when processing of the subband signals 
is intended [7]. In contrast, a new breed of near PR, 

Fig. 1: Filter magnituderesponsesof (a) a uniform FB (QMF 
filter 32C from [3]) and (b) a non-uniform OSFB with 
unequal bandwidth filters [g]; decimation ratios of t.he 
three resulting subbands are r = [2,3,21T. St.ronger 
branched filter banks can be achieved by iteration of 
these filters [15]. 

oversampled filter banks (OSFBs) described in [9] 
avoids aliasing between bands - thus making cross 
terms obsolete - and in-band aliasing by the use of 
non-uniform bandwidth filters wit,h different. decima- 
tion factors, as shown in Fig. l(b). 

In the following. we apply tap-assignment to normal- 
ized least-mean-square (NLMS) adaptive filtering in 
subbands produced by this new class of OSFRs by 
generalizing our approach in [15] to account for un- 
equal subsampling ratios, that, result in different com- 
plexities and time representations for t,aps in different. 
subbands. 

2. SUBBAND ADAPTIVE FILTERING 

We want to apply adaptive filters to the subband 
signals that we yield through decomposition of input 
and desired signal by an analysis filter bank. Wit.h 
critically sampled subbands, cross terms with a fixed 
and an adaptive part are required [7]. which compen- 
sate for leaked information and allow to adapt. with 
otherwise alias-distorted parts of the signal. IJsing 
the OSFB approach described in [8, 91, aliasing is 
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n.voided and thus cross t,erms can be neglected. Fig. 1 
shows the magnitude plots for both types of filter 
banks. The overall error can be calculated via a syn- 
thesis bank, which for our OSFBs is symmetrical to 
the analysis bank by design [9], thus fulfilling condi- 
tions for a tight frame decomposition in [4]. 

A reconstruction of the equivalent fullband response 
of the subband adaptive system may be accomplished 
off-lint by sending an impulse through analysis bank! 
adapted subband filters (in case of critical sampling 
also t,he cross terms), and the synthesis bank. It can 
be shown that the reconst,ruction error is bounded by 
the distortion function of the filter bank [13, 151. 

3. MEASURES FOR COMPLEXITY AND 
TIME-REPRESENTATION 

A digit,al filter running in a subband at a lower rate 
compared to the fullband system is characterized by 
two facts: (i) one filter tap now refers to a longer 
sampling period, thus resulting in an increased time 
representation compared to a fullband filter tap, and 
(ii) the filter is operated at a lower rate, thus re- 
ducing complexity. To handle these quantities for an 
SAF with different subsampling ratios, we need to 
introduce common measures. 

Let r E I+3M with entries T, holding the subsampling 
ratios in M subbands, which can be factored as r = 
&, a E N, such that r is free of any common integer 
divisor. We then define: 

l Equal Complexity Unit (ECU). An SAF in the mth 
band of length N,,, has th_c: same complexity as a 
fullband filter of length N, = N,,,/i’,l. We de- 
fine 1 ECU as &, ie. the smallest integer common 
to all subsampling ratios. This allows to compare 
complexity and exchange taps in ECU between dif- 
ferent subbands. 

l Equivulent Fullband Time Representation (EFTR). 
The EFTR of a filter of length N,,, in t.he mth 

band is approximately given by I?~ = r,N, full- 
band taps, as the sampling period in the mth band 
is increased by a factor of r, compared to the 
fullband2. 

In the following, ECU a.nd EFTR. quantities are char- 

acterized by (y) and (y), respectively. 

For judgement of complexity reduction, let us assume 
a constant DSP system benchmark of B multiply- 
accumulat,e (MAC) operations per fullband sampling 

‘Note that the critically sampled case is included with T, = 
1vm E (0, M-l}. 

‘We neglect the delay that has to be placed in the desired 
path of the SAF, growing longer with increased bank depth D 
1111. 

period. The complexity cb for a. filter bank calcula- 
tion is given through inspection by 

(1) 

where it is assumed that t.he filter bank is organized 
in a tree structure by D times iterating the filters in 
Fig. 1 wit,h M channels, filter length L, and subsam- 
pling ratios P. 

The total complexity of adaptive filtering using the 
NLMS algorithm (eg. [lo]) referring to one fullband 
sampling period is given by 

M-1 2N, + 2 
M-l 

G= c 
m=O rrn 

=f c (L+$). (2) 
m=O 

Therefore, the overall number of available ECIJs is 

M-l M-l 

ti = c k,,, = f (B - 3c;‘b) - c $. (3) 
m=O m=O 

The I? ECUs can be exchanged freely between bands 
to alter the tap profile. We next look at two possible 
extrema. 

Uniform EFTR. If, all SAl;‘s have same fullband 
time representation Nmin = Ni = Nj,Vi, j E (0, M- 

l}, each filter requires N,,, = fimin/(T,j;,) ECUs. 
Insertion in (2) yields 

M-l 

( 1 
-1 

Z+min = .G. C 1 . 
(4) 

m=O rm r, 

Concentrated EFTR. Here, either the plant or 
the input, signal’s energy is confined to the frequency 
range covered by a single subband, to which all taps 
can be dedicated. We use an average decimation ra- 
tio r to compensate for possible variations in r: 

M-l 

firm = A@.? withr= c r,,,. 
a’ (5) 

m=O 

Examples for the extrema. in time representa.tion are 
shown in Fig. 2 for different benchmarks, with results 
stated relative to the 1cngt.h N = i R- 1 of a fullband 
NLMS adaptive filter. The assumed filt,er banks are 
iterations of the filters characterized in Fig. 1. The 

range of EFTRs spanned between fimin and iQ,-,,,, 
provides the motivation for an adjustable distribution 
of the adaptive filter weights. 

4. TAP-PROFILE ADAPTATION 

Global error minimization. Let, input signal and 
observation noise in each subband, 2, and n,, be 
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Fig. 2: Relative time representation extrema fimi,/N and 

fimax/N for different benchmarks in dependency on 
the filter bank depth D for (a) critically sampled uni- 
form subbands and (b) oversampling non-uniform sub- 
bands relative to a fullband adaptive filter. 

uncorrelated and wide sense stationary. With the ex- 
pectation operator e{.}, the minimum of the mean- 
squared error (MSE) in the mt,h ba.nd can be ex- 
pressed as [15] 

k=N, 

(6) 

where wopt,m are the optimum weights of the re- 
sponse to be identified, projected into the mth sub- 
band. Thus, the residual error in (6) depends on the 
coefficients that cannot be identified due to trunca- 
tion by a too short adaptive filter, weighted by the 
variance of the input signal 03, and biased by the 

noise variance u;, . 

The relation between the energy in the subband sig- 
nals and the synthesized signal is governed by a fixed 
gain, as the critically sampled filter banks allow ap- 
plication of Parseval’s theorem, while the non-uniform 
OSFBs in [8] im pl ement a tight frame decomposition. 
Assuming steady state performance of t.he adaptive 
filters, global and subband MSE are related by 

M-l 

f{e”} = C chJ{eK}, (7) 
m=O 

whcrc C, Q, = ‘4-l) with A being the frame bound 
and oversampling ratio, holds if the /z-norm of the 

analysis filters is unity. Minimizing the global MSE 
thus requires 

aif{ ef } I ojE{ ei} L minVi,j E (0, M-l}. (8) 

The adjustment of the filter lengths N, can be in- 
terpreted as a constraint problem, where t,he profile 
should be optimized to yield a minimum global er- 
ror, while the overall computational complexity of 
the system must remain constant. 

Algorithm. Our proposed profile adaption is based 
on a constant pool of ECUs, which are suitably dis- 
tributed over the subbands. Every P fullband sam- 
ples (with P being a common multiple of i’) a profile 
adaptation step [12, 151 

N,,@+l) = &(k) - A 

is performed, where A ECUs are withdrawn from 
each SAF and re-distributed according to an appro- 
priate criterion c E IWM with entries c,. Different 
from [15], here we employ a fractional book keeping 
rather than an integer record, as for widely defer- 
ring decimation rates large ECU blocks had to be 
exchanged, which would result in coarse assignment, 
and required large P causing slower convergence. A 
post-processing stage has to ensure that subband fil- 
ters have a minimum number of taps remaining which 
at least equal the delay in the desired pat,h [ll, 151. 

The tapassignment error criterion c can take on dif- 
ferent forms. Firstly, it may be set equal to estimates 
of the subband MSEs [6] following (6). Secondly, a 
more robust but bias criterion [12], with simplifica- 
tions in [15] and a direct equivalence to the first sum- 
mand in (6), may be employed, which estimates the 
truncation error from the power of the last coeffi- 
cients in each filter, multiplied by the power of the 
input signal. Both criteria now need to be weighted 

by 0, in the mth band to account for the imple- 
mented frame decomposition. 

Finally, the length of the SAFs is calculated from 
the adapted ECU quantities and rounded according 
to N, = ]&,,i,,J. 

Example. For a comparison of adaptive filtering 
in fullband, 2 band uniform, and a non-uniform 2- 
3-2 subband system, we discuss a system identifica- 
tion example with a system benchmark R = 1250 
MACs/sample of an IIR system with dominant poles 
at R = 0.5 and R = 0.9. Fig. 3 shows the re- 
constructed equivalent fullband models, with trun- 
cation and truncation errors listed in Tab. 1, while 
the adaptation of the tap profile is depicted in Fig. 4 
for the two subband cases. Clearly, the oversampled 
system yields a better exploitation of computational 
resources through the omission of cross-terms -- at 
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Fig. 3: Comparison between a fullband model, and recon- 
structed models from adaptive filters 2 uniform and 
2-3-2 non-uniform subbands for a system benchmark 
B = 1250 MACs/sample. Arrows indicate truncation. 

Fig. 4: Example for profile records for (a) uniform and (b) 
oversampled non-uniform subband schemes. 

least for low bank depth D. Note that the error of 
the reconstructed equivalent fullband model for the 
non-uniform bank case closely approaches the bank 
distortion of -53.4dB. 

5. CONCLUSIONS 

We have derived a generalization for tap profile adap 
tation to accommodate for a new kind of filter banks 
[8,9] with non-uniform bandwidths and different sub- 
sampling ratios. Using these non-uniform OSFB for 
adaptive filtering in combination with tap-assignment 
has the potential of substantially improving the ac- 
curacy of system identification of very long impulse 
responses over critically sampled systems. Besides 
convergence issues discussed in [9], it also has advan- 
tages over critically sampled subbands through the 
omission of cross-terms, which can save computations 
and makes implementations less complex, although 
this is bought at the expense of different, potentially 
prime, decimation rates in a system. 

Although formulae have been specifically derived for 
the use with NLMS subband adaptive filters, the re- 
sults can easily be transfered to other O(N) algo- 
rithms. 

method EFTR error 

fullband 624 -21.6 dB 
2 band uniform M 1000 -29.0 dB 
non-uniform 2-3-2 band % 1720 -49.4 dB 

Tab. I.: Reconstructionerror Ih~~upl-wreionll$ and model length 
for given example. 
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