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ABSTRACT 

In this paper the signal subspace approach for non- 
parametric speech enhancement is considered. Tra- 
ditionally, the SVD (or the eigendecomposition) is 
used in frame-based methods to decompose the vec- 
tor space of the noisy signal into a signal- and noise 
subspace [l, 2, 51. Linear estimation of the clean sig- 
nal from the information in the signal subspace is 
then performed using a set of nonparametric estima- 
tion criteria. In this paper, the rank-revealing ULV 
decomposition is used instead of the SVD, and we use 
recursive updating of the estimate instead of work- 
ing in frames. An ULV formulation of three different 
estimation strategies is considered: Least Squares, 
Minimum Variance and Time Domain Constrained. 
Experiments indicate that the ULV-based algorithm 
is able to achieve the same quality of the recon- 
structed speech signal as the SVD-based method. 

1 SIGNAL AND NOISE MODEL 

Let x = (z~,Q;... , z~)~ denote the noisy signal 
vector of m samples and assume that, the noise 
component, n is additive a.nd uncorrelatcd with t,he 
speech signal s, i.e., x = s + n. 

A set of time shifted vectors can be organized in 
a data matrix X = S + N E lRIrLXTL wit,h Toep1it.z 

structure where m > n. We assume that the noise 
is broad-banded so rank(X) = rank(N) = n, and 
that the speech signal can be described by a low 
order model, giving a rank deficient matrix S with 
rank(S) = p < n. This formulation includes, for ex- 
ample, the damped complex sinusoid model! which 

has often been attributed to speech signals. 

2 ULV BASED SIGNAL ESTIMATION 

One approa.ch for nonparametric speech enhance- 
ment, is linear estimation of the clean signal from the 
noisy signal using signal subspace methods, which 
are based on the rank-revealing ULV decomposition 
(RRULVD) introduced by Stewart [8]. 

.4ssume that the singular values of X sa.tisfy 

Ul 2 ... >up>r>>up+] >.‘.>U.,, (1) 

then there exists a matrix UX E lR.nZx” with orthog- 
onal columns and a.n orthogonal matrix VX E IR.“Xn 
such that 

x = UXLXV~ (2) 

= ( UXl ux2 ) 

( 
“F”: Gox) (3:) 

where Lx1 E IRYxp, Gx E IR.(n-P)X(7L- p) and LX E 
IR nxn are lower triangular, and 

hninWX1) = up (3) 

P’xll~ + IlGx II; = u;+1 +. . . + CT; (4 

Thus, the signal- and noise subspaces defined by the 
gap in the singular values can be estimated using the 
R.RULVD, where the quality depznds on IIFxlln. 

An approximate LS estimate SALK of the signal 
matrix S can be computed by essentially substitut- 

ing the RRULVD for the SVD based estimate [3], 
thus replacing one problem with a similar, nearby 
problem that can be solved more efficiently, i.e., 

SALS = xvxrv;, (5) 

The estimate converges to the true LS solut,ion, if 
t,he following condition is satisfied 

l The off-diagonal matrix Fx is zero. 

Assume now that the estimator s of the pure signal 
mat.rix S is constrained to be a linear function of the 
data matrix XT i.e., 3 = XW where W E IR.‘““” is 

a. filt.er matrix, then the Minimum Variance (MV) 
estimator problem [7] is t-o find the matrix W that 
minimizes 

m$tr ((XW - S)T(XW - S)) 3 (6) 

WMV = (xTx)-lxTs (7) 
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Note, that under stationary and ergodic conditions: 
the MV estimator converges asympt.otically t.o the 
Linear Minimum Mean-Squared Error (LMMSE) es- 
timator as the number of rows m + oc [7]. 

To obtain the RRULVD based MV estimate pro- 
posed in [4], i.e., 

9,v = xvx, L,; (Lx1 - a;,&L,;)V;, (8) 

we need the additional conditions 

The signal is orthogonal to the noise: STN = 0. 

The matrix N satisfy: N”N = (T&~,~~&~. 

There is a distinct gap in the singular values of 
the matrix X: op > op+l. 

Gx = GUL-p is a diagonal matrix. 

The residual matrix R = S(W - In) + NW = 
Rs + RN minimized in the above method represents 
signal distortion Rs and residual noise RN. Since 
both terms can not be simultaneously minimized: a 
Time Domain Constrained (TDC) estimator is pro- 
posed in [2] which keep the residual noise energy 
ei = tr(R$RN) below some threshold while mini- 
mizing the signal distortion energy 6: = t,r(RzRs) 

min $ 
W 

subject to 6: 5 O!nU~L,ise 3 (9) 

WTDC = (STS + ya2 rLo&J-lsTS (10) 

where cy is a fixed or SNR-dependent parameter (0 5 
cr 5 l), and y is the Lagrange multiplier in (9). In 
a practical implementation, y is actually used as the 
parameter. 

Given the above conditions, we propose a 
RRULVD based TDC estimate; which can be ob- 
tained by using the following RRULVD formulations 
for S and X 

s = ( us1 us2 ) ( “OS1 8 ) ( ;i; )Ul) 

x = ( (U.s,L.sl + NV,s,)L$ NVs2~7;;~~~ ) 

.( Lx1 

0 n,,i.Lp ) ( zi; ) (12) 

and the relation LslLxl = L&Lsl + (T~,~~~I~, i.e.! 

. 
STDC = XVXl (Lx1 - n:,ise (1 - rwxy (13) 

. CL 
‘f 

Xl - d&Jx~wx I 

Note that for y = 0 we obtain (5) and for y = 1 
we obtain (8). For speech signals, the TDC estima- 
tion criterion will control the nonstationary residual 
noise with annoying noticeable tonal characteristics, 
referred to a.s musical noise, since this noise compo- 
nent decreases as y + 03. 

In practice, the above mentioned conditions are 
never satisfied exactly, but the R.R.ULYD is robust 
with respect to mild violations of these conditions. 

If the additive noise matrix N is colored, NTN # 
(T&,~~~I~, then a prewhitening transformation can be 
applied to the data matrix using the QR. decomposi- 
tion of N = QR 

XR-’ = SR-’ + NR-’ = SR-’ + Q (14) 

One problem concerning the prewhitening transfor- 
mation is the complicated update of the matrix 

XR-l when X and N are updated. This can be 
avoided by using the rank-revealing ULLY decom- 
position [6] of the matrix pair (X, N): which allows 
each matrix to be updated individually and deliv- 
ers the required factorizations without forming the 

quotients and products. 

3 IMPLEMENTATION 

The transformation y = V$x approximates the 
Karhunen-Loewe transform (KLT) of x. Hence, all 
t,he above mentioned linear signal estimates are ob- 
tained by the following steps (see Figure 1) 

l KLT of the noisy signal onto the signal subspace. 

l Modify the components of the KLT by a gain 
filter matrix G1 . 

l Inverse KLT of the modified components to re- 
construct the signal in the signal subspace. 

This scheme results in a generalized formulation of 
the optimal linear estimator 

B = Wx = Vx,GlV;,x (15) 

where the matrix G1 E IRpxp depends on the esti- 
mation method as shown in the last, section. 

The two matrices LX and Vx necessary for com- 
puting W are updated for each new sample xk cor- 
responding to a new row in the data matrix X. A 

new row is processed in the following four steps. 

l Updating: The new row of X is incorporated 
into the decomposition. 

l Downdating: The oldest, row of X is isolated 
and removed in the decomposition. 

l Deflation: Establishes and maintains the rank- 
revealing nature of the decomposition. 

l Refinement: The norm of Fx is reduced to im- 
prove the subspace quality. 

Obviously, the filter matrix W is estimated in an 
analysis window of width (m+n- l), centered around 
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the middle row of X. The linear estimator is ap- 
plied to this row, giving a n-sample synthesis win- 
dow. Finally, the enhanced vectors are combined us- 
ing the overlap and add synthesis approach, which 
corresponds to the LS esimate of the noise-free sig- 

nal sk from the enhanced vectors [9]. 

4 EXPERIMENTS 

A recursive R.R,ULLV algorithm has been developed 
based on the methods given in [8, 61, and was applied 
to speech signals contaminated by an .4R.( 1, -0.7) 
noise process. The noise matrix N was only updated 
in periods without speech, and the matrix dimension 
was m = 141 and n = 20. In all simulations, a TDC 

estimator is used. 

The typical average SNR of a reconstructed speech 
segment (voiced) using 100 independent noise real- 
izations and SNR = 5 dB is illustrated in Fig. 2 as 
a function of the signal subspace dimension p and 
the parameter y. Clearly, the MV estimate (y = 1) 
gives the best SNR improvement and is less sensi- 
tive to the choice of p compa.red with the other psti- 
mates. However: if r is chosen in the neighbourhood 
of 1, the variations are minimal. Thus, using a fixed 
value of p = 14 a.s in the following results, we a.re able 
to achieve a satisfactory quality of the reconstructed 
speech. An informal listening test gave y M 2 as the 
best fixed value, but a better choice is to make 7 
dependent on the local SNR. 

The RRULLV algorithm using a sliding window 
was applied to the speech signal in Fig. 3 with added 
broad-band noise (global SNR of 5 dB). Observe 
from Fig. 4 that their is a SNR improvement using 
the TDC estimate and that the variations a.mong the 
local SNRs of the va.rious segments are reduced. 

In the RRULLV algorithm computations can be 
saved by omitt,ing the refinement, step, i.e.: accepting 
a larger IlFx II*? but then the singular values of Lx1 
will underestimate the first p values oi(XR-l) by a 
larger factor. Similarily, the singular values of G-Y 
will in general overestimate the corresponding last 
n -p values ai(XR-‘). 

The graphs in Fig. 5 and 6 illustrates this problem. 
Here, the average singular values of a prewhitened 
voiced speech frame are compared with the one ob- 
tained from Lx1 and Gx with p = 14 and no refine- 
ment . Note: that; ai(Lxl) are plotted against the 
first p indices, and ci(GX) are plott,ed from index 
p + 1 to n. It is seen that the largest and smallest 
singular values and thereby the dominant range and 
null space are well determined by the R.RULLVD, 
while the subspaces are blurred together near the 
rank-revealing point p due to the off-diagonal block 
Fx and the small gap in the singular spectrum. As 
shown in Fig. 6, the quality can be increased by ap- 

plying a number of refinement steps. 
In Fig. 7, the canonical angles between the QSVD 

and RRULLVD based signal subspaces are plotted 

against their indices, where the example corresponds 
to the one in Fig. 5. As expected, there is a group 
of large angles due to the mix of signal a.nd noise 
subspace. However, since t.he singular spectrum 
of speech signals is relative constant at, the rank- 
revealing point, this ha.s no practical effect in a. noise 
reduction algorithm as shown in Fig. 8. Here, four 
different speech segments all result, in a reconstructed 

avcra.ge SNR, which is nearly independent of the 
number of refinement steps. This is also why these 
results closely match the QSVD based met.hod. 

Another issue is that the conditions for the 
RRULLV based estimates are typically not satisfied. 
However, as demonstrated in Fig. 8, the method is 
very robust concerning this. 

5 SUMMARY 

-4 recursive signal subspa.ce approach for noise reduc- 
tion of speech signals is present-ed. The algorithm is 
formulated by means of the RRSJLVD using a pro- 
posed set of estimators. The method is demonstrated 
to be comparable with SVD-based met,hods. 
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Figure 1 Filter structure. I)..5 ’ I 
II 2 4 6 x IO 12 I4 lh IX 20 

Singular Value Indices, I 

Figure 5 Average singular values of prewhitened (voiced) 
speech segment using 100 independent noise realizations and 
SNR=BdB. The rank revealed in Lx is p = 14 (without re- 
finement). 
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Signal Suhspsce Dimension, p 

Figure 2 Average SNR of a reconstructed noisy (voiced) 
speech segment using a TDC estimator with the listed -y val- 
ues, and SNR=SdB. The average is taken over 100 indepen- 
dent noise realizations. 

I, I 

Figure 3 Noise-free speech signal. 
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Figure 4 The local SNR of noisy speech signal (global 

SNR=5dB) and a TDC estimate with p=14 and y=2. 
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Figure 6 The ratios corresponds to the example in Fig. 5 
wit,hout, refinement, and a case with 5 refinement. steps (*). 

Figure 7 The average canonical angles sin(f?i) between the 
14 dimensional signal subspaccs obtained from the QSVD and 
t,he RRIJLLVD, respectively. The signals correspond to the 
example in Fig. G without refinement (o) and with 5 steps (*). 

s- 8===~,- ----- ----- _____ ---* - ----------_-___ ----* 
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Figure 8 Average SNR corresponding to four different re- 
constructed noisy (voiced) speech segments using a TDC es- 
timator with y = 2, p = 14 and SNR=5dB. The (*) marks 
are the QSVD based estimates and voiced/unvoiced frames 
are given by solid/dashed lines. The average is taken over 100 

independent noise realizations. 
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