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ABSTRACT 
Subband adaptive filtering is an important applica- 

tion of filter banks in which maximally decimated filter 
banks can not be used in general because of decimation 
aliasing effects. This leads to the use of oversampling 

schemes in the filter bank design wherein the perfect- 
reconstruction (PR) or near PR property is still required. 
In this work, a simple design technique for uniform 

DFT filter bank with near PR property is presented for 
the purpose of subband adaptive filtering. The prototype 
filter in the proposed filter banks can be obtained simply 
by performing an interpolation of a two-channel QMF 
filter. The filter bank design technique presented in this 
paper is of particular interest in engineering applica- 
tions, as demonstrated by design examples. 

1 INTRODUCTION 

Subband adaptive filtering has received much atten- 
tion in recent years especially in the context of acoustic 
echo cancellation (AEC) [l]-[2]. In a typical subband 
filtering scheme for AEC, both the input and the refer- 
ence signals are split into subband components by anal- 
ysis banks. Adaptive filters are applied in each subband 
at a decimated rate and the resulting outputs are recom- 
bined by a synthesis bank to create a full-band output 
signal at the original rate. In this application, a PR (per- 
fect reconstruction) or near PR property for the filter 
banks is also needed because this subband system could 

also be used to transmit local speech signals during dou- 
ble talk periods. 

Generally, maximally decimated filter banks, which 
have received considerable attention in the literature and 

are used in subband coding, can not be applied directly 
in a subband system for AEC due to aliasing effects [2]; 

accordingly, oversampling scheme (i.e, non-critical 
sampling) is typically used in this type of application of 
filter banks. Yet, desgite the importance of providing 

simple and concrete ways to design filter banks satisfy- 
ing certain requirements in engineering applications, 
specific design techniques of filter banks with arbitrary 
oversampling rates which are suitable for subband adap- 
tive filtering do not appear to be available at the 
moment. 

In this paper, we present a simple and systematic 
design technique for uniform DFT filter banks, which 

satisfy near-PR property in the oversampling scheme. 
With the proposed filter bank structure, design of the 
analysis/synthesis prototype filter simply amounts to per- 
forming an interpolation of the well-known two channel 
QMF filters, which have been tabulated in [3] and 141. 

Weighted-overlap-add approaches [3] are used for the 
implementation of the filter banks such that an arbitrary 
sampling rate in subbands can be obtained efficiently. 

2 A STRUCTURE FOR UNIFORM DFT 
FILTER BANKS 

A structural diagram of the proposed K-channel filter 
banks is shown in Fig. 1, where W, = exp[j2n/K] 

and h(n) (analysis filter) and g(n) (synthesis filter) are 
lowpass filters with cutoff frequency 0,. = n/K. The 

ideal lowpass property for H(z) should be 

(1) 

One can see that the analysis bank is a standard uniform 
DFT analyzer while the synthesis bank represents a gen- 
eralized form of the DFT synthesizer found in 131. In the 
analysis bank, after modulation and lowpass filtering, the 
subband signal is decimated by an integer factor M IO 
produce the kth subband signal, X,(m). The latter can be 
expressed in the z-domain as 

where W, = exp[j2n/M] . 
In the synthesis bank, each subband signal is first 

upsampled by the factor M and then passed to the com- 

mon synthesis filter s(n). The output of each filter are 
demodulated and then added to produce the synthesized 

output n(n) . If no modifications are made to the subband 

signals X,(z), the synthesizer output 2(n) can be 
expressed in the z-domain as 

K-l 
k’(z) = x X,(z”W;M)C(ZW;) w”, 

k =O 

(3) 
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Substituting (2) into (3), we have 

M-I 
2(z) = c T,(z)X(zWJ 

m = 0 

where 

(4) 

T,(z) = ;‘i’ W:H(z W;W;)G(zW;) 
k = ,I 

(5) 

We now make the following assumptions: (a) the 
downsampling rate M is less than the number of the sub- 
band K, i.e., M < K ; (b) the analysis filter h(n) is a FIR 
filter, whose length L can be expressed as a multiple of 
the subband number K; (c) The synthesis filter g(n) is 
obtained by flipping h(n) in the time domain, i.e., 
g(n) = h(L-n- l), n = 0, . ..( L- 1. 

Under these assumptions, it can be shown that alias- 
ing components in the synthesis bank output i(n) will 

be eliminated approximately, i.e., T,(z) = 0 for 
m = 1, . ..( A4 - 1 , and that the equivalent transfer 

function between x(n) and 2(n) can be expressed as: 

k = 0 

Clearly, T,,(eio) has a linear phase, which is one of the 
desirable property of the filter bank. 

Then, it remains only to design the lowpass filter 
H(z) to minimize the amplitude distortion of T,r(& . 
According to (6). an ideal flatness requirement for 

koteico)l can now be expressed as 

K-l 

1 IH(e’“W:)I’ = 1, for all 61 (7) 
k = II 

In the next section, a simple approach is given to design 
the prototype filter H(z) such that IT,,(e’O)l is accept- 
ably flat. 

3 PROTOTYPE FILTER DESIGN 

The requirements (1) and (7) can not be satisfied 
exactly for any FIR filter H(z). The design problem for 

H(z) thus converts to approximate these requirements 

under a certain criterion. A commonly used criterion 
[3], [4] is to minimize an error function E, which is 

defined as 

E = w&+ E, (8) 

where o! is a real positive weighting factor while Es and 
E, express the errors in approximating the conditions (1) 
and (7), respectively, and are given by 

E,. = 4 Ki’IH(e’wW;)12 _ 1 do 
o k = 0 

(10) 

In (9), o,, ( o,~ > 61, ) is the stopband edge which deter- 
mines the transition band of H(e’“) . The basic idea of 
the technique that we propose below for the design of the 
prototype h(n) is to transform the K-channel problem (8)- 
(10) into an equivalent problem for a 2-channel QMF 
bank. Solutions for the latter can then be obtained easily 
by computation or table look-up. The details of this 
approach are now exposed. 

Suppose K is even, i.e., K = 2 I, where I is a positive 
integer. When K = 2 (i.e., I = 1) and h(n) is symmetrical. 
the cost function in (8) is identical to that used in 
Johnston’s scheme [4]. As a result, minimizing (8) will 
lead to solutions for the well-known two-channel QMF 

bank. Let /z,,(n) denote the resultin_g QMF prototype. The 
corresponding transfer function T,j(ej”), obtained from 

(6) with K = 2, will be 

TO(ejO) = e -“‘-““~{IH,,(e’“)/? + /H,,(-e’“)l’} (I I) 

We recall that QMF filters have been widely used in two- 
channel filter banks and their coefficients have been tabu- 
lated [3], [4] for various choices of the parameters L, CI 
and 0,. 

For I > 1, solutions for the filter design based on min- 
imizing the cost function (8) can be obtained with the use 
of computer-aided optimization techniques. For example, 
the Hooke and Jeaves search algorithm used in 
Johnston’s scheme [4] can also be applied to (8) for 
designing h(n). Instead of using complex optimization 
programs, however, we will show that a simple way to 
design h(n) is just to perform an f-point interpolation of a 
two-channel QMF prototype ho(n). The simplicity of this 
design procedure will bring great convenience in practi- 
cal engineering applications. 

To this end, let h(n) be obtained from the I-point 
interpolation of h,,(n) followed by anti-imaging low- 

pass filtering, i.e. 

H(eiW) = H,,(ej’“)F(eju) (12) 

where F( e’“) is a low-pass filter with cutoff frequency at 
X/I. The amplitude responses for H,,(ei’o) and F(e,y) 
are illustrated in Fig. 2 for the case K = 8. Since H,,( d”‘) 
itself is lowpass with cutoff frequency at a/2,, it is not dif- 
ficult to design the anti-imaging filter F(e’“) such that 
(see Fig. 2) 
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,H(ejO), = lHo(e’“‘)l~ 
i 

1015; 
(13) 

7t 
i </01<7t 

A simple way to perform such an f-point interpolation, 
for example, is to use the Matlab interpolation function 
interp(), such as h = interp(h0, I), to obtain h(n) satis- 
fying the property (13) with a good approximation. 

Substituting (13) into (6), one can show that 

Comparing (14) with (1 l), we see that IT,,( ejO)l has the 
same flatness as Ttr(ejw)l does. Thus, the reconstruction 
error for the filter bank with H(e@) should be consis- 
tent to that for the corresponding two-channel QMF 
bank based on the K = 2 prototype ho(n). 

In summary, the prototype filter h(n) used for the K- 
channel filter bank in Fig. 1 can be obtained by perform- 
ing a K/2-point interpolation on a two-channel QMF 
prototype h&z). The reconstruction error is determined 
by the corresponding two-channel QMF bank. As men- 
tioned earlier, QMF prototypes can be found conve- 

niently from tables in [3] and [4] and a Matlab 
interpolation function can be used to perform the corre- 
sponding interpolation. In this way, the usual filter 
design procedure which needs complex optimization 

programing is avoided. This characteristic is of particu- 
lar significance in engineering applications. 

4 REALIZATION 

It is well-known that the uniform DFT filter bank is 

the most efficient one in terms of realization. There are 
basically two different approaches for the efficient real- 
ization of uniform DFT filter banks [3]: one is based on 
the polyphase structure and the other one is based on the 
weighted-overlap-add (WOA) structure. The polyphase 

structure is only suitable for a decimation factor M satis- 
fying K = M i, where i is a positive integer. The WOA 
structure is more general and can be used with an arbi- 
trary value of the decimation factor M. In the context of 
subband adaptive filtering, the WOA structure is thus 
preferred since it offers more flexibility in the selection 
of the decimation factor M. 

The WOA method for the realization of the uniform 
DFT’ analysis bank can be found in [3]. Since the syn- 

thesis bank in Fig. 1 differs from the conventional uni- 
form DFT synthesis bank [3] in the choice of the 

demodulation function, corresponding differences will 
appear in their WOA-based realization. Due to space 

limitation, details about this realization will not be pro- 

vided here. 

5 DESIGN EXAMPLES 

In this section, we present one filter bank design 
example that demonstrates the simplicity of application 
of the new technique that we propose in this work as well 
as the quality of the resulting filter banks. 

In this example, a K = 8 channel filter bank is 
designed. We first selected a QMF prototype 32D tabu- 
lated in [3]-[4] and denoted it as ho(n). This filter has a 
total of & = 32 symmetrical coefficients and its stop- 
band attenuation is 38 dB; when used in a two-channel 
QMF bank, the reconstruction error is 0.025 dB. To 

design a K = 8 channel filter bank, h(n) is obtained from 
ho(n) by using the Matlab function h = interp(h0,4) to 

perform an I = 4 point interpolation. The resulting proto- 
type filter h(n) has L = 128 coefficients. The cut-off fre- 
quency of H(e’“) is at 0.518 = 0.0625. Fig. 3 shows the 

magnitude response of H( e’“) . 
The amplitude distortion of the filter bank can be seen 

from the plot of MlT,,(e’“)l appearing in Fig. 4. The 
amplitude distortion is within f0.035 dB . The aliasing 
distortions are shown in Fig. 5 for M = 4, 7 and 8 (critical 
sampling rate). 

As can be seen from this figure, high aliasing occurs 
only for critical sampling rate; when M = 7 (or less). 

aliasing errors are acceptably small (less than -S6dB3. 
Thus, in this example, a filter bank which can be used 
appropriately for subband adaptive filtering can be 
obtained by choosing M = 7 in the designed filter bank. 

6 CONCLUSIONS 

Filter banks with oversampling rates in the subbands 

are typically used in subband adaptive filtering. In this 
work, a simple design technique for a modified uniform 
DFT’ filter bank was presented. The proposed filter bank 
exhibits the following properties: (a) near-PR property in 

the oversampling scheme; (b) simple design procedure 
based on an interpolation of a 2-channel QMF prototype; 

(c) efficient weighted-overlap-add realization. These 
characteristics are particularly interesting for engineering 
applications. 
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Fig. 1. Uniform DFT filter banks: analyzer (left) and synthesizer (right) 
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Fig. 2. Amplitude responses of H,,(.&"') and F(e@‘) 

for the case K = 8 
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Fig. 3. Magnitude response of a K = 8 channel prototype 
filter with length L = 128 
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Fig. 4. Magnitude distortion M ITO(eiw)l 
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Fig. 5. Aliasing distortion of the filter bank for 

different downsampling rate M 
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