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Abstract— Phoneme classification is the process of finding the 

phonetic identity of a short section of a spoken signal. 

Performances of existing classification techniques are often 

insufficient, since they rely on Euclidean distances between 

spectral and temporal features, whereas the relevant features lie 

on a non-linear manifold. In this work, we propose to integrate 

into the phoneme classification a non-linear manifold learning 

technique, namely "Diffusion maps". Diffusion maps builds a 

graph from the feature vectors and maps the connections in the 

graph to Euclidean distances, so using Euclidean distances for 

classification after the non-linear mapping is optimal. We show 

that Diffusion maps allows dimensionality reduction and 

improves the classification results. 

Keywords- feature extraction,  phoneme classification, unvoiced 

fricatives, diffusion maps, geometric harmonics. 

I.  INTRODUCTION  

Classification of phonemes is the process of finding the 

phonetic identity of a short section of a spoken signal  [1]. It is 

a key stage in many speech processing algorithms and 

applications, such as spoken term detection, continuous speech 

recognition, and speech coding, but it can also be useful on its 

own, for example in selective processing of phonemes for the 

hearing impaired, or in the professional music industry. In 

existing methods for discrimination between 

phonemes  [1],  [2],  [3], the first step in the process of 

classification is  extracting relevant features from the signal, 

and constructing a vector of features (feature-vector) for each 

phoneme segment. In the second step, a classification 

algorithm is applied on the feature-vector, such as k-nearest 

neighbors (K-NN)  [4] or support vector machines (SVM)  [2].  

There are two fundamental problems in these methods: 

1. In order to capture optimally the nature of the signal and 

differ efficiently between phonemes, the feature-vector usually 

needs to be high-dimensional. As the number of signals 

increases, the computational complexity increases as well, 

leading to the need of a dimensionality reduction technique. 

2. Usually the data - the feature-vectors, lie on a non-linear 

manifold, therefore classification techniques which rely on 

Euclidean distances might yield poor classification results. 

Moreover, linear and global methods for dimensionality 

reduction, such as Principal Component Analysis (PCA)  [5], 

will not reveal the true geometry of the manifold. 

To overcome these problems, non-linear manifold learning 

techniques, such as ISOMAP, LLE, Laplacian Eigenmaps or 

Hessian Eigenmaps, can be applied as an intermediate step of 

dimensionality reduction, before the classification operation 

itself. In this work we use such a technique called "Diffusion 

Maps"  [6],  [7], which provides a parameterization of the data 

set on a lower-dimensional manifold, while emphasizing the 

differences between feature-vectors of different phonemes. 

Another task which is dealt with is the out-of-sample 

extension problem. A method called “Geometric 

Harmonics”  [8] allows reducing the computational complexity 

by extending the parameterization of diffusion maps from a 

limited training set to the rest of the training set. Furthermore, 

it embeds each new phoneme we wish to classify, from a 

testing set, into the diffusion maps parameterization of the 

limited training set.  

The rest of the paper is organized as follows: Methods and 

algorithms are presented in section II. The experimental 

procedure and preprocessing are described in Section II.A, the 

feature extraction step is detailed in Section II.B and the 

Diffusion framework is introduced in Section II.C. 

Experimental results are presented in Section III. Finally, the 

advantages of using the diffusion maps for phoneme spotting 

are discussed in Section IV. 

II. METHODS AND ALGORITHMS 

A. Experimental Procedure and Preprocessing 

  The dataset for this study includes more than 1100 isolated 

phonemes, excerpted from the TIMIT speech database, of both 

male and female speakers. The phonemes chosen for the 

analysis are the unvoiced fricatives /s/, /sh/, /f/ and /th/. These 

phonemes are specifically important since they tend to be 

indistinguishable for the hearing impaired  [9]. 

In the preprocessing stage, each phoneme segment is divided 

into consecutive non-overlapping short frames (8 ms) which 

are denoted as "analysis frames", and multiplied by a 

hamming window. The reason for the short length of the 

frames is twofold: first, the classification of the whole 

phoneme can be improved by using a majority vote decision, 

and in addition, it can be used for a real-time application of 

phoneme spotting. Since the important information of the 

unvoiced fricatives is contained in the high frequency range, 

this choice is suitable. A feature extraction stage is then 

applied, using both time domain and frequency domain 

parameters to  
 



 

 

 Figure 1: The experimental procedure. 

represent each frame. As described in the next section, a total 

of 15 features are selected according to their discrimination 

ability. 

The classification algorithm is applied in two steps: 

1. Dimensionality reduction – embedding the data into a 

lower dimensional manifold using diffusion maps  

(section II.D). 

2. Classification of the data, with and without the 

dimensionality reduction, using the K-NN algorithm. 

A schematic block diagram of the experimental procedure is 

shown in Figure 1. 

B. Feature Extraction 

The features used to characterize the phonemes are mostly 

based on the spectral shape, but also on the time domain 

parameters. The features are computed for each analysis 

frame, and include: 

1. Spectal Peak Locations  [3]: These include frequency 

locations of the peaks of the spectral envelope. 

2. Spectral Rolloff: The spectrum rolloff point is defined 

as the boundary frequency rf , below which p  

percent of the magnitude distribution is concentrated  
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where ( )tM k is the magnitude of the Fourier 

transform at frame t and frequency bin k . In this 

study, p  values of 25%, 50% and 75% are used. 

3. Spectral Centroid: The spectrum centroid is defined 

as the center of gravity of the magnitude spectrum of 

the STFT 
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4. Band Energy Ratio: Band Energy ratio is defined as 

the ratio of the spectral energies of two bands  
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where 
1B

E and 
2B

E  are the spectral energies of two 

frequency bands, ( here 1 4 8B kHz= − and

2 2 4B kHz= − ). 

5. Zero Crossing Rate (ZCR): The zero-crossing rate of 

a frame is defined as the number of times the audio 

waveform changes its sign in the duration of the 

frame: 
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 where ( )x n  is the time domain signal for frame t . 

6. Time Domain Zero Crossings Standard Deviation, 

Skewness and Kurtosis: These moments of the ZCR 

are computed using the statistics of the time intervals 

between consecutive zero crossings. 

7. Mel Frequency Cepstral Coefficients: Mel-Frequency 

Cepstral Coefficients (MFCC) are also based on the 

STFT. After computing the logarithm of the 

magnitude spectrum, and grouping the DFT bins 

according to a Mel-frequency scale, a discrete cosine 

transform is performed on the result. Only the first 

three coefficients were found to be discriminative and 

are used for the feature vector. 

8. Lacunarity β parameter, as described in  [10].  

C. Diffusion Framework 

1) Embedding Into a Lower Dimensional Manifold 

Let { } 1

M
X i i

= =x  be a high-dimensional data set of M

samples. Let :k X X× → ℝ be a kernel representing a notion 

of similarity between two data samples. Based on the relation 

defined by the kernel, we form a weighted graph or a 

Euclidean manifold, where the data samples are the vertices 

and the kernel sets the weights of the edges connecting the 

data points. The kernel, for ( , ) Xi j ∈x x , is 

• symmetric : ( , ) ( , )k ki j j i=x x x x  

• positive semi-definite: ( , ) 0k i j ≥x x . 

The specific kernel function is application oriented, chosen to 

yield meaningful connections, and it constitutes our prior 

definition of the local geometry of X . Following classical 

construction in spectral graph theory  [11], a Markov random 

walk on the data set is defined 
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where ( ) ( , )
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x x x . The function p can be 

considered as the transition probability function of a 

Markov chain on{ }ix , since ( , ) 1
1

M
p i j

j
=∑

=
x x . Specifically, 

( , )p i jx x represents the probability of transition in a single 

random walk step from node ix to node jx . Let ( , )pt i jx x be 

the probability of transition from ix  to jx in t steps. Let K  

denote the matrix corresponding to the kernel function ( ),k ⋅ ⋅ , 



where its ( ),i j th  element is ( , )k i jx x , and let 
1

P D K
−=  

be the matrix corresponding to the function ( ),p ⋅ ⋅ on the data 

set { }ix , where D is a diagonal matrix with ( )D dii i= x . Let 

X be a matrix consisting of the data samples  
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T

M
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Advancing the random walk on the data set a single step 

forward can be written as PX . Running the random walk t

steps forward corresponds to applying the kernel function

( , )pt i jx x , and is equivalent to 
t

P X . With a smart choice of 

parameters this process results in revealing the relevant 

geometric structure of { }ix , and taking larger powers of P

enlarges the scale. The matrix P has a discrete sequence of 

non-negative eigenvalues { }
0l l

λ
≥

 and right eigenvectors 

{ }
0l l

ψ
≥

such that 1 ...
0 1 2

λ λ λ= > ≥ ≥ and P
l l l

ψ λψ= . The 

distances on the set{ }ix  which represent the connectivity in 

the graph in scale t are called diffusion distances and are 

notated as { }Dt t∈ℕ .  We define the family of diffusion 

maps  [7] ( )t iΨ x  as: 
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where ( ) { }, max such that 
1

t t
s t l

l
δ λ δ λ= ∈ >ℕ , and 

0δ > is the relative accuracy (explained later). Each 

component of ( )t iΨ x is termed a diffusion coordinate. 

Results from spectral theory show that the diffusion map 

( ),
:

s t
Xt

δ
Ψ → ℝ  embeds the data set into a Euclidean space 

of ( ),s tδ  dimensions, and  in this space Euclidean distance is 

equal to the diffusion distance up to the relative accuracyδ , or 

equivalently, 

 ( ) ( ) ( ),
2

Dt t ti j i j≅Ψ − Ψx x x x . (5) 

Therefore, if the dimensionality of the data can be reduced to
 ( ),s tδ , then the equation above is an exact equality, and the 

Euclidean norm captures the exact distance between nodes ix  

and jx  in the manifold of dimension
 

( ),s tδ . As t increases, 

the spectrum decay is faster, and ( ),s tδ is smaller.  

In this work, the set { }ix represents the set of feature-

vectors of the unvoiced fricative phonemes. In order to convey 

the local geometry of the data, we used a Gaussian kernel  

 ( )( , ) exp ( ). /k i j i j σ= − −x x x x , (6) 

where σ is a vector that consists of elements proportional to 

the standard deviations of each of the features, and the 

division is element-wise, leading to a multi scale embedding. 

We do not change the scaling of the manifold learning (i.e. 

1t = ), and we set ( ), 10s tδ = , which means that we use only 

the top 10 diffusion coordinates (which correspond to the 

largest eigenvalues that do not equal 1). Therefore, the family 

of diffusion maps is reduced to: 
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2) Out-of-Sample Extension 

The parameterization described in the previous subsection is 

conducted over a limited set from the training set, to maintain 

a limited computational complexity. In order to extend the 

family of diffusion maps to the rest of the data (which includes 

both the rest of the training set and the testing set), we use a 

method called "Geometric Harmonics"  [8]. If we denote the 

limited data set, which was used to build the matrix P as X , 

and the rest of the training set as  X ( )X X⊂ , then the 

extended eigenvectors which belong to the feature vector 

Xi ∈x can be calculated as a weighted sum of the 

eigenvectors of the limited data set:  
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and the new family of diffusion maps for each vector ix  is: 
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In order to classify new data from the testing set, which will 

be denoted as Xɶ , the Geometric Harmonics method is applied 

again for every feature-vector Xi ∈x ɶɶ , and the extended 

eigenvectors ( )il
ψ xɶ ɶ  are calculated as in (8). The new family 

of diffusion maps for each vector ixɶ , is, similarly, given by: 
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A new phoneme is classified by applying K-nearest neighbors 

(K-NN) algorithm (with K=5) with Euclidean distance. The 

classification is applied on the family of diffusion maps of the 

testing set ( )iΨ xɶ ɶ according to that of the training set ( )iΨ x .  

Figure 2: Diffusion map (2D) of the unvoiced fricatives feature 

vectors. The phonemes are marked by: /f/ - blue, /s/ - red, /sh/ - 

magenta, /th/ - green. 

 

 "[f]" "[s]" "[sh]" "[th]" 

[f] 0.91 0.01 0.02 0.06 

[s] 0.03 0.85 0.11 0.02 

[sh] 0.06 0.04 0.90 0.00 

[th] 0.41 0.16 0.03 0.40 

 

 "[f]" "[s]" "[sh]" "[th]" 

[f] 0.90 0.01 0.05 0.04 

[s] 0.01 0.88 0.08 0.02 

[sh] 0.07 0.05 0.88 0.00 

[th] 0.51 0.21 0.05 0.23 

 
Table 1: Confusion matrix for male data using K-NN– with 

diffusion maps (up) and without diffusion maps (down), for 

classification using majority vote 

The classification results are compared to classification using 

K-NN without embedding the features using diffusion maps. 

We chose K-NN as the classifier because of its simplicity. 

For visualization, the embedding of the feature vectors to a 

2D mapping using diffusion maps is shown in Figure 2. The 

clusters that represent different phonemes can be seen.  

III. EXPERIMANTAL RESULTS 

For the evaluation of the performance of the algorithm the 

database described in Section II.A is used. The feature vectors 

are then produced, one for each frame, for male and for female 

separately (44,148 and 25,531, respectively). A K-NN 

algorithm is used for the classification, with 5K = , for the 

original data (feature vectors of 15-d) and the data after 

applying the diffusion maps stage (feature vectors of 10-d). 

The results are obtained using 10-fold cross-validation. The 

results presented here are the average for 1000 testing sets. 

In classification of each analysis window separately, the 

average correct identification rate of the algorithm for the data 

with the intermediate step of diffusion maps (feature vectors 

of 10-d) is 68.23 1.22%± , while the classification using the 

original 15 dimensional feature vectors is 65.34 1.17%± . 

Similar results are obtained for female data. 

Applying a majority vote for the feature vectors of the same 

phoneme segment, an accuracy of 78.44 5.88%±  is obtained 

using the diffusion maps coordinates, compared to an accuracy 

of only73.79 6.08%±  with the original feature vector.  

The results of the evaluation stage of the K-NN with and 

without the mapping with diffusion maps are summarized in 

the confusion matrices in Table I.  

IV. CONCLUSSIONS 

The method of “Diffusion maps” for manifold learning 

leads to improved classification of unvoiced fricative 

phonemes when using a simple classification algorithm as K-

NN, and to reduction of the dimension of the problem. From 

this work it seems that the features that distinguish between 

different phonemes lie on a non-linear, lower-dimensional 

manifold. The classification should be conducted in this 

manifold, and not in the original space of features. Moreover, 

dimensionality reduction leads to lower computational 

complexity and saves storage space. Future work may include 

comparison to other methods of nonlinear manifold learning. 
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