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Abstract—We present a novel way to estimate the empirical distribution

of clean speech spectral coefficients. Rather than computing the histogram

of clean speech within a certain signal-to-noise ratio interval, we normal-

ize the spectral coefficients on the square-root of the spectral variance

estimated via recursive averaging, the decision-directed approach or

temporal cepstrum smoothing. We show that estimated distributions

depend significantly on the used spectral variance estimator. Further, if

the speech spectral variance is estimated in noisy conditions, the resulting

histograms exhibit heavier tails as compared to clean conditions. The

cepstral variance estimation approach is shown to result in less heavy

tails as compared to the decision-directed approach.

I. INTRODUCTION

In this work we discuss the estimation of the distribution of speech

spectral coefficients obtained from a short-time discrete Fourier

transform (DFT) in the context of speech enhancement frameworks.

The distribution of clean speech spectral coefficients is of great

importance for speech enhancement algorithms. It is used to derive

an optimal estimator for the clean speech spectral coefficients given a

noisy observation. If both clean speech and noise spectral coefficients

are Gaussian distributed, the optimal estimator for the clean speech

spectral coefficients is the well-known Wiener filter. Other estimators

result if an estimate of the clean speech spectral amplitudes or their

logarithm is desired [1], [2]. More recently, also various estimators

for supergaussian distributed speech spectral coefficients have been

derived [3], [4], [5], [6], [7]. Due to the nonstationary character

of speech, the determination of the true local distribution is very

difficult. To obtain an estimate for the distribution, the histogram

of the spectral coefficients is used. However, it is important that

the samples used to create the histogram obey the same distribution

model and, in particular, have the same mean and variance. While it is

reasonable to assume that complex speech spectral coefficients have

zero mean, the determination of the variance is particularly difficult.

To determine the variance of speech spectral coefficients, the

ensemble average of the magnitude squared spectral coefficients

has to be taken [8]. For speech signals, however, only a single

realization is available at each time-frequency point. Therefore, the

ensemble average has to be replaced by a smoothing over time

and/or frequency. As speech is nonstationary and hence not ergodic,

the variance estimation can only be an approximation of the true

variance. As a consequence, also the estimated distribution of speech

spectral coefficients will have errors. While due to the central limit

theorem and the sum inherent in the DFT, for increasing segment

sizes the speech spectral coefficients are asymptotically complex

Gaussian distributed, in speech processing frameworks segment sizes

are usually too small for the central limit theorem to hold. This was

observed by Porter and Boll [9] and confirmed in [3], [4].

In this work we review the estimation of the distribution of clean

speech spectral coefficients used in [3], [4] in Section II, while in

Section III we propose an alternative method.

II. REVIEW ON ESTIMATING AND MODELING THE DISTRIBUTION

OF CLEAN SPEECH

In this section, we review the method to estimate the histogram of

clean speech proposed in [3], [4], and also review a parameterized

distribution function that can be fitted to observed histograms.

The distribution of clean speech is used as prior knowledge when

deriving optimal estimators for clean speech given a noisy observa-

tion. The prior should reflect the distribution of clean speech when

a specific estimator is used for speech variance estimation. In single

channel speech enhancement often the decision-directed approach [1]

is used for speech variance estimation. When the histogram method

is used to describe the distribution of a random process, great care

has to be taken that the samples used for creating the histogram obey

the same distribution model. Thus, Martin [3] proceeds as follows:

white noise is added to a clean speech signal at 40 dB global signal-to-

noise ratio (SNR) and the a priori SNR is estimated via the decision-

directed approach. Then, to assure that the samples used for creating

the histogram have a similar variance, the histograms are evaluated

only in a narrow interval where the estimated a priori SNR is between

28 and 30 dB. There are some limitations using this procedure. First,

the resulting histograms depend on the chosen SNR range as reported

in [7]. Secondly, the interval cannot be chosen infinitely small,

which means that the resulting histogram will be taken over random

processes with different variances, such that the histogram might

appear to be more super-Gaussian than it should. If for example the

realizations of two Gaussian processes with a variance of 28 dB and

30 dB are concatenated, the resulting kurtosis is kurt ≈ 3.16 and thus

larger than for each of the Gaussian processes (kurt = 3), indicating
a super-Gaussian distribution. Finally, evaluating the histogram only

in an interval of 28 to 30 dB of the estimated SNR is rather restrictive:

while low energy speech components that yield an a priori SNR

below 28 dB do not contribute to the histograms at all, due to the

one-frame delay of the decision-directed SNR estimate, even silence

may contribute at speech offsets, where the decision-directed a priori

SNR estimate may still be large while the speech sound is not active

anymore. On the other hand, speech onsets do not fully contribute

to the histograms, as at speech onsets the decision-directed SNR

estimate is still rather low. The fact that silence is included in the

histograms will result in an overestimation of the frequency of small

amplitudes.

To derive optimal clean speech estimators, the spectral amplitudes

can be modelled by the generalized Gamma distribution

p(|Sk|) =
ν

Γ (µ)

(

µ

σ2
S,k

)µ

|Sk|νµ−1 exp

(

− µ

σ2
S,k

|Sk|ν
)

, (1)

where, Sk is the clean speech spectral coefficient at frequency bin k,
σ2

S,k = E
{

|Sk|2
}

is the variance of the complex spectral coefficients,

µ and ν are shape parameters, and Γ(·) is the complete gamma

function [10, (8.31)]. For ν = 2 (1) resembles the χ-distribution,



while for ν = 1 (1) resembles the χ2-distribution. In this context

2µ is often referred to as the degrees of freedom [11]. For complex

Gaussian distributed spectral coefficients Sk, the spectral amplitudes

are distributed as (1) with µ = 1, ν = 2, which is also referred to as

Rayleigh distribution. Super-Gaussian distributions can be modelled

by choosing ν < 2 or µ < 1. Optimal estimators for χ and χ2-

distributed spectral amplitudes are given by Erkelens, Hendriks et al.

[6], Andrianakis and White [7], and Breithaupt et al. [12].

III. PROPOSED ESTIMATION OF THE DISTRIBUTION OF CLEAN

SPEECH

In this section we propose an alternative way to estimating the

distribution of speech spectral coefficients.

A minimum mean square error (MMSE) optimal estimate for a

function of clean speech spectral coefficients is given as [9], [11],

[13]

E
{

c(Sk(l))|Yk(l) , σ2

S,k(l), σ2

N,k(l),H1,k(l)
}

, (2)

where Yk is the noisy observation, l is the segment index, σ2

N,k is the

noise variance, H1,k is the hypothesis that speech is present, and c(·)
is some function, such as the absolute value operator, the squared

absolute value, or the logarithm of the absolute value. To solve

the expectation in (2) the distribution of the clean speech spectral

coefficients is needed. When the distribution of clean speech spectral

coefficients is determined in the context of MMSE estimation, two

important properties can be seen from (2). First, (2) is conditioned

on speech presence. Thus, the histogram should be computed using

all (but only) those time-frequency points where speech is active.

Secondly, (2) is conditioned on the speech spectral variance. Thus,

the speech spectral variance is assumed to be known at each time-

frequency point, and is thus treated as deterministic. Considering

the first property, we propose to include all time-frequency points

where the magnitude squares of clean speech spectral coefficients

are larger than -65 dB with respect to the largest time-frequency

coefficient in a considered speech sample, similar to [6]. This is in

contrast to [3] where the histogram considers only few speech (and

possibly also non-speech) spectral coefficients where the estimated

variance is large. To consider the deterministic character of the speech

spectral variance in (2), we propose to normalize the complex spectral

coefficients on the square-root of an estimate of the speech variance.

This is different to [3] where the histogram is computed over a certain

interval of the a priori SNR, and thus a certain variation of the speech

spectral variance can be expected. The histogram obtained by the

proposed approach thus reflects the average distribution of all clean

speech spectral coefficients for a given variance estimator under the

condition that speech is present, and hence allows to solve (2).

A. Estimating the speech spectral variance

A simple variance estimator is given by a recursive averaging with

a fixed smoothing factor α, as

σ2

S,k(l) = α σ2

S,k(l − 1) + (1 − α) |Sk(l) |2 . (3)

As the recursive estimate (3) is a function of the current clean speech

coefficient Sk(l), the recursive variance estimate σ2

S,k(l) and the

current speech coefficient Sk(l) are correlated. As a consequence,

|Sk(l) | cannot be arbitrarily large with respect to a given σS,k

estimated by (3). With respect to |Sk(l) |2 the smallest possible

value for σ2

S,k(l) is given when the previous estimate is zero, i.e.

σ2

S,k(l − 1) = 0. Then, σ2

S,min,k(l) = (1 − α) |Sk(l) |2 and the upper

bound for the normalized amplitudes is

|Sk(l) |
σS,min,k(l)

=
1√

1 − α
. (4)

As a consequence, no heavy tails can be expected when the recursive

averaging is used to estimate the speech spectral variance.

To reduce a smearing of the speech spectral structure, for speech

enhancement algorithms, often the decision-directed approach [1] is

used to estimate the variance of the speech spectral coefficients. With

the observed noisy speech Yk(l) = Sk(l) + Nk(l) and the noise

variance σ2

N,k, the decision-directed speech spectral variance estimator

can be written as

σ2

S,k(l) = αdd |Gk(l − 1) Yk(l − 1) |2

+ (1 − αdd) max{0, |Yk(l) |2 − σ2

N,k(l)}. (5)

In the case the noise signal is zero, we have Yk = Sk, σ2

N,k = 0,
and Gk = 1. For clean speech, the decision-directed speech variance

estimator thus results in

σ2

S,k(l) = αdd |Sk(l − 1) |2 + (1 − αdd) |Sk(l) |2 (6)

Further, as usually αdd is chosen close to one, for clean speech, the

decision-directed approach results approximately in the periodogram

of the previous frame, as

σ2

S,k(l) ≈ |Sk(l − 1) |2. (7)

Note that the decision-directed approach can also be defined without

this delay [14, Section 3.4.1]. Then, given a clean observation, the

histogram of the spectral amplitudes would be approximately given

by a single peak at |Sk(l) |/σS,k = 1.
The third variance estimator we consider is the temporal cepstrum

smoothing approach proposed in [15]. For the bias compensation we

use [16, Algorithm 1] and assume that the speech spectral amplitudes

are χ-distributed with µ = 1.

B. Observed distribution given a clean observation

In Fig. 1 the results of the three variance estimators for the clean

speech in Fig. 2 are given. For creating the histograms, we use 5 male

and 5 female speakers from the TIMIT database [17], a sampling

rate of fs = 16 kHz, a segment length of 32ms, and a Hann spectral

analysis window without zero-padding and with 50% overlap. We

show the Gaussian and the super-Gaussian Laplace distribution with

unit variance along with the histogram of the real part of the speech

spectral coefficients. The histogram of the spectral amplitudes is

shown along with a Rayleigh-distribution and unit variance, and the

χ2-distribution with shape parameter µ = 2 and unit variance.

It can be seen that the recursive smoothing smears speech onsets

over time (compare Fig. 2 and Fig. 1(a)). The resulting histogram for

the recursive variance estimator is very peaked, but does not exhibit

heavy tails, as the normalized amplitudes are bound to be smaller than

1/
√

1 − α = 1.823. The decision-directed approach yields basically

a shifted version of the input (compare Fig. 2 and Fig. 1(d)). The

histogram of the real part of the complex spectral coefficients in

Fig. 1(e) is more peaked than the Gaussian distribution but less

peaked than the Laplace distribution. Further, the histogram is clearly

more heavy-tailed than the Gaussian and the Laplace distribution.

Accordingly, also the histogram of the spectral amplitudes in Fig. 1(c)

exhibits heavy tails as compared to the Rayleigh distribution.

The cepstral approach in Fig. 1(g) can be seen to result in a

smoothing of |Sk|2 that maintains the speech spectral structure very

nicely. The tails of the histogram of the real part in Fig. 1(h) can

be well modeled by the Laplace distribution, while the tails of the

spectral amplitudes in Fig. 1(i) are well modeled by a χ2-distribution

and µ = 2. Using the cepstral approach can be seen to yield less

heavy tails as compared to the histograms obtained by the decision-

directed approach.
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(a) Recursive smoothing with α = 0.7. The
speech structure is smeared.
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(b) Histogram of ℜ{Sk}. Variance estimation
based on a recursive smoothing with α = 0.7.
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(c) Histogram of |Sk|. Variance estimation based
on a recursive smoothing with α = 0.7
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(d) Decision-directed approach [1], αdd = 0.98.
The result is virtually identical to Fig. 2, but
delayed by one frame.
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(e) Histogram of ℜ{Sk}. Variance estimation
based on the decision-directed approach [1],
αdd = 0.98
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(f) Histogram of |Sk|. Variance estimation based
on the decision-directed approach [1], αdd =
0.98
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(g) Temporal cepstrum smoothing [15]. The
speech spectral structure is well preserved.
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(h) Histogram of ℜ{Sk}. Variance estimation
based on temporal cepstrum smoothing [15].
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(i) Histogram of |Sk|. Variance estimation based
on temporal cepstrum smoothing [15].

Fig. 1. Spectrograms and histograms for different speech variance estimators. The clean speech is given in Fig. 2. While in the first line a recursive smoothing
with α = 0.7 is used, the second line gives the results for the decision-directed approach. In the last line the result for temporal cepstrum smoothing are shown.
In the left column the speech variance estimate is plotted, in the middle column the histogram of the real part of clean speech is compared to a Gaussian and
a Laplace distribution. In the right column the histogram of the amplitude of clean speech is compared to a Rayleigh distribution and a χ2-distribution with
shape parameter µ = 2.
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Fig. 2. Clean speech spectral coefficients |Sk(l) |2.

C. Observed distribution given a noisy observation

In the previous section we estimated the histograms of clean

speech, based on the speech variance σ2

S,k which was estimated given

clean speech. We have seen that the shape of the distribution clearly

depends on the chosen speech variance estimator. However, in a

noisy environment, the speech variance estimate on which (2) is

conditioned, is estimated from noisy speech. Thus, one may argue that

the distribution of clean speech, which is used to solve (2), should be

a distribution that results from the speech spectral variance estimated

in a noisy environment. To see how the histograms change when

the speech power is estimated in a noisy environment, we degrade

clean speech by white Gaussian noise at a segmental SNR of 10 dB.

For the decision-directed approach (5) we employ the Wiener filter

Gk(l−1) = σ2

S,k(l−1)/(σ2

S,k(l−1)+σ2

N,k(l−1)). While the resulting

speech variance estimates and histograms are given in Fig. 3, the

noisy speech is given in Fig. 4.

Comparing the estimated speech variance in the presence of noise

in Fig. 3 to the estimated speech variance in the absence of noise in

Fig. 1, it can be seen that at time-frequency points where speech is

present, the speech spectral variance is often underestimated if it is

estimated in a noisy environment. The underestimation of the spectral

variance results in a larger likelihood that speech spectral coefficients

are larger than the square-root of the spectral variance, which in turn

results in heavier tails of the histograms (compare Fig. 3 to Fig. 1).

Comparing Fig. 2 to Fig. 3(a) and Fig. 3(d), it may be seen that

the cepstral approach preserves the speech spectral structure better

than the decision-directed approach. Thus, also in the noisy case the

cepstral approach yields less heavy tails as compared to the decision-

directed approach.
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(a) Decision-directed approach [1], αdd = 0.98.
Low energy spectral harmonics are smoothed out.
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(b) Histogram of ℜ{Sk}. Decision-directed ap-
proach [1], αdd = 0.98
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(c) Histogram of |Sk|. Decision-directed ap-
proach [1], αdd = 0.98
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(d) Temporal cepstrum smoothing [15]. The
speech spectral structure is well preserved.
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(e) Histogram of ℜ{Sk}. Variance estimation
based on temporal cepstrum smoothing [15].
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(f) Histogram of |Sk|. Variance estimation based
on temporal cepstrum smoothing [15].

Fig. 3. Similar setup as in Fig. 1 but the speech spectral variance is estimated speech disturbed by white Gaussian noise at 10 dB input SNR (cf. Fig. 4).
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Fig. 4. Noisy speech spectral coefficients |Yk(l) |2. The speech coefficients
are disturbed by white Gaussian noise at 0 dB segmental SNR.

IV. CONCLUSION

We reconsidered the estimation of the distribution of clean speech

spectral coefficients used for a minimum mean square error (MMSE)

estimation of clean speech spectral coefficients. As the considered

MMSE estimators treat the speech spectral variance as deterministic,

the speech variance should also be treated as deterministic when es-

timating the underlying distribution. For this we propose to compute

the histograms of all clean speech spectral coefficients normalized on

the square-root of the estimated speech spectral variance. We have

shown that the empirical distribution depends significantly on the

used variance estimator. Further, as in the presence of noise state-of-

the-art speech variance estimators tend to underestimate the speech

variance in speech presence, results indicate that with a decreasing

global SNR more heavy-tailed speech priors should be used.
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