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Abstract—An improved algorithm for the estimation of the
reverberation time (RT) from reverberant speech signals is
presented. This blind estimation of the RT is based on a simple
statistical model for the sound decay such that the RT can be
estimated by means of a maximum-likelihood (ML) estimator.
The proposed algorithm has a significantly lower computational
complexity than previous ML-based algorithms for RT estima-
tion. This is achieved by a downsampling operation and a simple
pre-selection of possible sound decays. The new algorithm is more
suitable to track time-varying RTs than related approaches. In
addition, it can also estimate the RT in the presence of (moderate)
background noise.

The proposed algorithm can be employed to measure the
RT of rooms from sound recordings without using a dedicated
measurement setup. Another possible application is its use within
speech dereverberation systems for hands-free devices or digital
hearing aids.

Index Terms—reverberation time, blind estimation, low com-
plexity, speech dereverberation

I. INTRODUCTION

The reverberation time (RT) is an important quantity for the

characterization of enclosed auditory spaces [1]. This measure

is commonly used to assess the amount of room reverberation

or its effects. The RT is defined as the time interval in which

the energy of a steady-state sound field decays 60 dB below

its initial level after switching off the excitation source. The

measurement of the RT out of a sound decay can be done

by the interrupted noise method [2]. Schroeder has proposed

a method to obtain the RT directly from a measured room

impulse response (RIR) instead of calculating it by the

ensemble average of different sound decays [3].

However, such methods can not always be applied for

reverberation time estimation (RTE). In many cases, it is

necessary to perform a blind RTE, i.e., the RT has to be

determined from a reverberant signal without knowing the

excitation signal or room geometry. One example is the

measurement of the RT within occupied rooms where the use

of noisy excitation signals can disturb or irritate the occupants.

Another prominent example are speech enhancement systems

where knowledge about the RT can be exploited to perform

speech dereverberation [4], [5].

A semi-blind estimation of the RT is presented in [6]

where the room characteristics are ‘learned’ by using a neural

network approach. In the context of acoustic echo cancelation,

an estimate of the impulse response between loudspeaker and

microphone is available from which the RT can be determined

[7], [8].

A blind estimation of short RTs (T60 < 0.6 s), which is

based on an estimate of the pitch period of speech signals, is

proposed in [9]. An approach for a blind RTE in the frequency-

domain is presented in [10]. The distributions of speech decays

are thereby measured in the short-term DFT domain where the

change of these distributions due to reverberation is exploited

to estimate the RT. A training is required to calibrate the

needed ‘mapping parameters’.

An alternative method, which does not require such a cali-

bration, is proposed in [11], [12]. The RT is estimated in the

time-domain and relies on a maximum-likelihood estimation

(MLE). In contrast to the blind RTE of [4], a sound decay

detection is not employed, which results in a more accurate

and robust estimation. In [13], it is shown how the ML-based

RTE of [11] can be extended to estimate the RT in the presence

of background noise, which is of interest, e.g., for speech

enhancement systems [5], [14].

A problem of these blind methods for RTE is their rather

high computational complexity and their slow convergence

towards changing RTs. These problems are addressed in this

contribution. The devised algorithm for blind RTE is also

based on a MLE, but has a significantly lower computational

complexity than previous proposals. In addition, the new

algorithm accounts also for time-varying RTs.

The paper is organized as follows: In Sec. II, the underlying

sound decay model and maximum-likelihood (ML) estimation

of the RT are introduced. The new algorithm is described in

Sec. III where simulation examples are provided by Sec. IV.

The main results of this contribution are summarized in Sec. V.

II. SOUND DECAY MODEL & ML ESTIMATION

A reverberant speech signal is considered which is given

by a speech signal s(k) convolved with a time-varying RIR

h(η, k) of (possibly infinite) length Lh:

z(k) =

Lh−1∑

η=0

s(k − η) · h(η, k) (1)

with k marking the discrete time index. Within a speech pause

s(k − η)

{
≈ 0 for η = 0, 1, . . . , Lo − 1

6= 0 for η = Lo, . . . , Lh − 1,
(2)
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the room reverberation causes a sound decay d(k) since

z(k) =

Lo−1∑

η=0

s(k − η) · h(η, k)
︸ ︷︷ ︸

≈ 0

+

Lh−1∑

η=Lo

s(k − η) · h(η, k)
︸ ︷︷ ︸

.
= d(k)

(3)

where it is assumed that h(Lo, k) 6= 0. The sound decay d(k)
is modeled by a discrete random process

dm(k) = Ar v(k)e
−ρ k Ts ǫ(k) (4)

with real amplitude Ar > 0, decay rate ρ and ǫ(k) marking the

unit step sequence. The variable Ts = 1/fs marks the sampling

period and v(k) is a sequence of i.i.d. random variables with

zero mean, variance of one and normal distribution N (0, 1).
The energy decay curve for the corresponding time-continuous

sound decay model reads

Ed̃(t)
.
= E

{
d̃2m(t)

}
= A2

r e
−2 ρ t ǫ̃(t) (5)

where the tilde indicates the time-continuous counterparts to

the discrete quantities of Eq. (4). A relation between the decay

rate ρ and the reverberation time T60 can be established by

the requirement

10 log10

(
Ed̃(0)

Ed̃(T60)

)
!
= 60 (6)

such that

T60 =
3

ρ log10(e)
≈ 6.908

ρ
. (7)

Due to this relation, the terms decay rate and RT will be used

interchangeably in the following.

According to the above model, the decay d(k) is repre-

sented by a random variable with Gaussian probability density

function (PDF)

pd(k)(x) =
1√

2π ξ(k)
exp

{
− x2

2 ξ2(k)

}
(8)

where

ξ(k) = Ar a
k ǫ(k) and a = e−Ts ρ . (9)

The sequence d(k) for k ∈ {0, . . . , N − 1} is modeled by

N independent random variables with zero mean and non-

identical PDFs having normal distributions. This allows to

derive a maximum-likelihood (ML) estimator for the unknown

decay rate or RT, respectively, [11], [13]. The decay rate ρ
is estimated from a given sound decay d(k) by finding the

maximum

ρ̂(ML) = max
ρ

{L(ρ)} (10a)

of the log-likelihood function

L(ρ) =

−N

2

(
(N − 1) ln(a) + ln

(
2π

N

N−1∑

i=0

a−2 id2(i)

)
+ 1

)
.

(10b)

The ML estimate for the RT T̂ (ML)
60 is obtained by Eq. (7).

Eq. (4) can also be seen as a simple statistical model for

the RIR, which considers only the effects of late reflections

and models them as diffuse noise. Accordingly, the MLE can

also be used to estimate the RT out of a measured RIR. The

model of Eq. (4) is rather course and different generalizations

of the original ML-based RTE of [11] have been proposed.

In [13], a MLE of the RT in the presence of additive noise

is derived. A MLE which accounts for multiple decay rates

(associated with early and late room reflections) is proposed

in [15]. However, such a model is not considered here as it

causes a significantly increased computational complexity.

III. EFFICIENT RT ESTIMATION

For the blind RTE, the reverberant speech signal z(k) is

first downsampled by R sample instants

x(n) = z(nR), R ∈ N (11)

with n marking the discrete time index after subsampling. This

downsampling allows to reduce the computational complexity

of the algorithm where the choice for R depends on the

sampling frequency fs. This approach is reasoned by the fact

that the estimation of the RT by a MLE (or the Schroeder

method) relies on an energy decay, cf., Eq. (5) and (6). The

characteristic of this energy decay is also preserved if a

(moderate) subsampling is applied.

The downsampled sequence is processed within frames of

M samples shifted by M∆ sample instants

xf(λ,m) = x(λM∆ +m) with m = 0, 1, . . . ,M − 1
(12)

and λ ∈ N. In a first step, a pre-selection is conducted to

detect possible sound decays, cf., Eq. (3). For this, the current

frame xf(λ,m) is divided into L = M/P ∈ N sub-frames

y(λ, l, κ) = xf(λ, l P + κ) (13)

with κ = 0, 1, . . . P−1 and sub-frame index l = 0, 1, . . . L−1.

Then it is checked whether the energy, maximum and mini-

mum value of a sub-frame deviates from the successive sub-

frame according to

P−1∑

κ=0

y2(λ, l, κ) > w(var)
l+1 ·

P−1∑

κ=0

y2(λ, l + 1, κ) (14a)

max
κ

{y(λ, l, κ)} > w(max)
l+1 · max

κ
{y(λ, l + 1, κ)} (14b)

min
κ

{y(λ, l, κ)} < w(min)
l+1 · min

κ
{y(λ, l + 1, κ)} (14c)

with sub-frame counter l = 0, 1, . . . L − 2 and weighting

factors 0 ≤ wl ≤ 1. If one of these conditions is violated,

it is checked whether the counter l has reached a minimum

value 1 < lmin < L − 2. If this is not the case, the

comparison is aborted and the next signal frame xf(λ+1,m)
is processed. Otherwise, the consecutive sub-frames for which

Eq. (14) applies are detected as a possible sound decay. For

this segment, the RT is calculated by means of Eq. (10) for a

finite set of RT values (decay rates).

A new ML estimate is used to update a histogram com-

prising the last Kf ML estimates for the RT. The RT T̂
(1)
60 (λ)
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associated with the maximum of the histogram is taken as

current RT estimates. (The maximum instead of the first peak

can be taken as this histogram contains due to the pre-selection

no significant number of outlier as for the approaches of [11],

[13].) The variance for the estimated RT is reduced by a

recursive smoothing such that the final estimate is given by

T̂60(λ) = β(λ) · T̂60(λ− 1) +
(
1− β(λ)

)
· T̂ (1)

60 (λ) (15)

with 0 < β(λ) < 1.

The choice for the time-varying smoothing factor β(λ) as

well as Kf is subject to a trade-off: High values reduce the

variance for the RT estimate, but changes are detected more

slowly and vice versa. In order to alleviate this problem with

low complexity, a second histogram is introduced which is

determined by the last Ks < Kf ML estimates. If the RT

estimates obtained from this second histogram T̂ (2)
60 (λ) deviates

from that of the first one T̂
(1)
60 (λ) for a certain period

∣∣∣T̂ (1)
60 (λ) − T̂

(2)
60 (λ)

∣∣∣ > ǫT for λ = λ1, . . . , λQ, (16)

the estimate of the second histogram T̂ (2)
60 (λ) is used for

Eq. (15) and the first histogram is filled with the values of the

second one. In this case, a low smoothing factor β(λ) < 0.5
is used for Eq. (15) where a high smoothing factor β(λ) > 0.9
is taken otherwise.

Some properties of the new approach should be noticed.

The detection of a possible sound decay according to Eq. (14)

reduces the high computational burden of executing Eq. (10)

within fixed time intervals as done in [11]–[13].1 Another

benefit (and difference) is that the frame length N for Eq. (10)

is now adapted to the length of the detected sound decay and

not constant. This enables to estimate a higher range of RTs

(as demonstrated in the next section). In contrast to the RTE

of [4], a false detection for a sound decay does not directly

lead to an overestimated RT as the final estimate is obtained

from a histogram which results in a more robust estimate.

IV. SIMULATION EXAMPLES

The performance of the new algorithm for RTE shall be

illustrated by some simulation examples. For this purpose, a

speech signal is convolved with a RIR according to Eq. (1) for

a sampling frequency of fs = 16 kHz. The coefficients of the

RIR are switched two times at instant k0 and k1 to analyze

the tracking of a changing RT. The employed RIRs are taken

from the AIR database [16] (and downsampled to 16 kHz). The

first RIR with a RT of 0.25 s is measured in a low reverberant

studio booth at a distance of 50 cm between loudspeaker and

microphone. The second RIR with a RT of 0.67 s is measured

in a reverberant office room with a loudspeaker-microphone

distance of 300 cm. Both RIRs are measured without a dummy

head and the calculation of the actual RTs is based on the

Schroeder method as described in [13].

The main parameters that are used for the improved

RTE are listed in Table I. The evaluation of Eq. (10)

1The ‘fast online algorithm’ of [12] updates the log-likelihood function
efficiently for each sample instant k. Here, the ML estimation is not calculated
at each sample instant, but only if a sound decay is detected which results in
a much lower computational load.

TABLE I
MAIN PARAMETERS OF THE NEW ALGORITHM FOR RTE (fS = 16 KHZ).

R M M∆ L lmin β(λ) ǫT Ks Kf Q

5 128 25 7 3 {0.995,0.2} 0.2 s 400 20 30
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Fig. 1. Comparison of the new algorithm for blind RTE with the algorithm
of [13] for a time-varying RIR.

is performed for discrete decay rates corresponding to

T60 ∈ {0.1 s, 0.105 s, . . . , 1.5 s} and a bin size of 0.05 s is

taken for the histograms.

The new algorithm is compared with the blind RTE of

[13].2 The RTs estimated over time by the two algorithms are

plotted in Fig. 1. It can be observed that the proposed RTE

provides a more accurate estimate of the RT than the previous

approach [13]: The deviation from the actual RT is much

lower and the change of the RT is detected more accurately.

(The detection of time-varying RTs can be improved by a

different parameter setting or smoothing for the reference

algorithm [13], but this in turn increases the variance for the

RT estimate.) The overestimation of the reference algorithm

[13] for low RTs is attributed to the fixed buffer length used for

the ML estimation. As a consequence, this buffer contains not

only the sound decay, but also the following tail which causes

the overestimation. The use of a smaller buffer length can

alleviate this problem but decreases the estimation accuracy

for higher RTs. The new algorithm solves this problem by

adapting the buffer length to that of the detected sound decay.

The new RT estimation possesses also a significantly lower

computational complexity; the execution time of its MATLAB

implementation was more than 3 times faster than for the

reference algorithm.

A blind RTE has often to be performed in noisy environ-

ments. An example is the use of a blind RTE for speech

dereverberation and noise reduction, e.g., [5], [14]. A noise

reduction can be applied to the noisy and reverberant speech

in a pre-processing step which, however, can only achieve a

partial noise reduction. Hence, the RTE has to cope (at least)

with some residual noise. Therefore, the RT estimation out

2A comparison with the blind RTE of [11], [12] requires an adaptation of
the algorithm to account for time-varying RTs as in [13].
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Fig. 2. Evaluation of the new RTE for a time-varying RIR where the
reverberant speech signal is disturbed by additive, white Gaussian noise with
different SNRs. (The corresponding curve for an RT estimation without noise
is given by Fig. 1.)

of a reverberant and noisy speech signal is now considered.

The reverberant speech signal is distorted by additive, white

Gaussian noise with different signal-to-noise-ratios (SNRs).

The obtained results are shown in Fig. 2. A comparison with

Fig. 1 reveals that the noise leads to an overestimation of the

RT, especially for lower SNRs. Another consequence is that a

changing RT is detected more slowly as more speech decays

are now deemed as unsuitable due to the noise. However,

the presented RTE still provides feasible results for moderate

noise. The noise causes that the sound decay immerges into

a ‘noise floor’. The pre-selection procedure detects the actual

sound decay and avoids to some extend that the noise floor is

included in the segment used for the ML estimation.

In addition, a pre-denoising can be applied in case of a low

SNR by means of a noise reduction system, cf., [13], [14].

The investigation of the improved RTE w.r.t. its application to

speech enhancement is a topic of ongoing research and beyond

the scope of this contribution.

V. CONCLUSIONS

An improved algorithm for the blind estimation of the RT

is devised. It is based on a simple statistical model for the

sound decay such that the RT can be estimated by a ML

estimation. In contrast to previous approaches [11]–[13], the

new algorithm exhibits a significantly lower computational

complexity. This is achieved by a downsampling operation and

an efficient pre-selection of possible sound decays. In addition,

the new algorithm can track time-varying RTs with a much

higher accuracy than related algorithms for blind RTE. The

proposed method is also capable of estimating the RT in the

presence of moderate background noise.

The presented algorithm for a blind RT estimation with low

complexity is of interest, among others, for speech derever-

beration in digital hearing aids [14], [17].

REFERENCES

[1] H. Kuttruff, Room Acoustics, Taylor & Francis, London, 4th
edition, 2000.

[2] ISO-3382, “Acoustics-Measurement of the Reverberation Time
of Rooms with Reference to Other Acoustical Parameters,” Inter-
national Organization for Standardization, Geneva, Switzerland,
1997.

[3] M. R. Schroeder, “New Method of Measuring Reverberation
Time,” Journal of the Acoustical Society of America, vol. 37,
pp. 409–412, 1965.

[4] K. Lebart, J. M. Boucher, and P. N. Denbigh, “A New Method
Based on Spectral Subtraction for Speech Dereverberation,” acta
acoustica - ACOUSTICA, vol. 87, no. 3, pp. 359–366, 2001.

[5] E. A. P. Habets, Single- and Multi-Microphone Speech Derever-
beration using Spectral Enhancement, Ph.D. thesis, Eindhoven
University, Eindhoven, The Netherlands, June 2007.

[6] T. J. Cox, F. Li, and P. Dalington, “Extracting Room Rever-
beration Time From Speech Using Artificial Neural Networks,”
Journal of the Acoustical Society of America, vol. 49, no. 4, pp.
219–230, 2001.

[7] M. Buck and A. Wolf, “Model-Based Dereverberation of Single-
Channel Speech Signals,” in Proc. of German Annual Confer-
ence on Acoustics (DAGA), Dresden, Germany, Mar. 2008, pp.
261–262.

[8] E. A. P. Habets, S. Gannot, and I. Cohen, “Dereverberation and
Residual Echo Suppression in Noisy Environments,” in Speech
and Audio Processing in Adverse Environments, E. Hänsler and
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