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ABSTRACT
In this paper, we present a new adaptive microphone array process-
ing algorithm for hands-free sound capture. Most traditional adap-
tive beamforming techniques operate solely on the basis of the direc-
tion of arrival of the desired source and are blind to any knowledge
about the signal itself. In contrast, the proposed algorithm uses a
nonlinear spatial filter to generate an estimate of the magnitude of
the source signal. This estimate is then used to drive the adapta-
tion of a linear beamformer according to a log-MMSE criterion. By
combining a nonlinear spatial filter with an adaptive beamformer in
this manner, we are able to exploit the high SNR output from the
nonlinear spatial filter to drive a linear beamformer that does not
suffer from distortions or artifacts. A series of experiments demon-
strate that the proposed method generates improvements in PESQ
and SNR over conventional methods.

Index Terms— adaptive beamforming, microphone arrays, spa-
tial filtering

1. INTRODUCTION

High quality sound capture in hands-free applications has been an
ongoing challenge for the last several decades. The growing use of
mobile phones and computing devices, voice over IP (VoIP), and
speech recognition, has increased the need for such technology. Mi-
crophone arrays have long been proposed as a means of obtaining
high quality sound capture. The source signal is captured by multiple
microphones and jointly processed to generate an enhanced output
signal [1]. The most common form of microphone array processing
is beamforming, which creates a linear spatial filter that can capture
sounds from a desired direction and attenuate sources of unwanted
noise. Most beamformers can be divided into two basic classes of al-
gorithms, time-invariant and adaptive. Time-invariant beamformers
are those whose parameters are created offline and then held con-
stant during deployment. In contrast, adaptive beamforming algo-
rithms have parameters that are updated during deployment in order
to better react to a noise environment that is unknown a priori.

The most well known methods of both time-invariant and adap-
tive beamforming operate under the Minimum Variance Distortion-
less Response (MVDR) principle. That is, they seek to minimize the
power of the array’s output signal subject to the constraint that there
should be no distortion in gain or phase of signals coming from the
desired direction of interest. Both the delay-and-sum and superdi-
rective beamformers operate under this principle (under different as-
sumptions of the noise). The most well-known adaptive algorithms,
the Frost beamformer [2] and the Generalized Sidelobe Canceler
(GSC) by Griffiths and Jim [3] also operate under this criterion, but
in an online manner.
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Fig. 1. Block diagram of proposed Log-MMSE adaptive beamform-
ing algorithm that uses a nonlinear spatial filter to generate an esti-
mate of the desired target signal.

One of the most curious and interesting aspects of these beam-
forming algorithms is that they are “signal agnostic”. That is, they
operate blind to any knowledge of the source signal and perform
solely on the basis of a presumed or estimated direction-of-arrival
(DOA). In this paper, we propose a new adaptive beamforming al-
gorithm that attempts to use an estimate of the target signal to drive
the beamformer adaptation. We use a nonlinear spatial filter as a
preprocessor that generates an estimate of the source signal. The
spatial filter’s suppression rule is based on a time-varying gain func-
tion which generates an output signal that has significantly improved
SNR. However, because the spatial filter estimates the magnitude of
the target signal but not the phase, the output tends to have the same
types of distortion and artifacts that plague other common noise sup-
pression algorithms, e.g. Wiener filtering.

In this work, we use the estimate of the magnitude generated by
the spatial filter as a target signal for an adaptive beamformer. By
using only the magnitude from the spatial filter and not the noisy
phase, we can learn the best linear filter that approaches the spatial
filter output signal. Because it is learned in an online fashion in an
iterative manner, it evolves smoothly and thus is free from the distor-
tions and artifacts created by the spatial filter. The beamformer uses
an MMSE objective function that operates on the log spectra of the
estimated target signal and the array’s output signal. Operating on
the log spectrum has two advantages over the complex spectrum or
the magnitudes: first, the log operation is similar to the compression
that occurs in the human auditory system and as a result, log-domain
optimization is believed to be more perceptually relevant than spec-
tral optimization. Secondly, because of the compressive nature of the



log operation at large values, large differences in magnitude produce
relatively small differences in the log domain. As a result, the log
domain optimization is robust to errors in the estimation of the tar-
get signal’s magnitude. A block diagram of the proposed algorithm
is shown in Figure 1.

The remainder of this paper is as follows. In Section 2 we
review traditional adaptive beamforming, and in particular, Frost’s
algorithm. Section 3 describes the nonlinear spatial filter used in
this work. The Log-MMSE adaptive beamforming algorithm is pre-
sented in Section 4. We describe the basic algorithm and two vari-
ants. In Section 5, the efficacy of the proposed beamforming algo-
rithm is shown through a series of experiments on actual recordings.
Finally, we present some conclusions in Section 6.

2. ADAPTIVE BEAMFORMING

We assume that a source signal Dt(ω) is captured by an array of M
microphones. The received signalsXt(ω) = {X1,t(ω), . . . , XM,t(ω)}
are then segmented into a sequence of overlapping frames, con-
verted to the frequency domain using a short-time Fourier trans-
form (STFT) and processed by a set of beamformer parameters
Wt(ω) = {W1,t(ω), . . . ,WM,t(ω)} to create an output signal
Yt(ω) as follows:

Yt(ω) =
∑
m

W ∗m,t(ω)Xm,t(ω) = WH
t (ω)Xt(ω) (1)

If a time-invariant beamformer is being employed, the weights do
not vary over time, i.e. Wt(ω) = W(ω).

In this paper, we assume that all frequency bins are processed
independently. As a result, we will drop references to frequency bin
ω from our notation for convenience and clarity.

In an adaptive beamformer, the goal is to learn the beamformer
parameters Wt in an online manner as samples are received. Most
adaptive beamformers have been developed by examining the deriva-
tion of time-invariant beamformers and substituting instantaneous
estimates for long-term statistics. For example, the well-known Frost
beamformer utilizes the same MVDR design criterion used to create
the superdirective or delay-and-sum beamformers. Thus, the goal of
the Frost beamformer is to minimize the power of the array’s out-
put signal, subject to a linear constraint that specifies zero distortion
in gain or phase from the desired look direction. This results in the
following objective function

H(W) =
1

2
WHSXXW + λ(WHC −F) (2)

where C describes the steering vector in the desired look direction
θ and F defines the desired frequency response in this direction. To
derive an online adaptive version of the MVDR beamformer, Frost
used a gradient descent method whereby the weights at a given time
instant are a function of the previous weights and the gradient of the
objective function with respect to these weights.

Wt+1 = Wt − µ∇WH(Wt) (3)

These updated weights must also satisfy the distortionless constraint,
such that

WH
t+1C = F (4)

By taking the derivative of H(W ), substituting (3) into (4), and
solving for Wt+1, it can be shown that the adaptive beamformer in
Frost’s algorithm has the following update equation

Wt+1 = P (Wt − µY Ht Xt) + F (5)

where µ is the learning rate, P = (I − C(CHC)−1CH) and F =
C(CHC)−1F .

3. NONLINEAR SPATIAL FILTERING

Nonlinear spatial filtering was originally proposed as a post-filtering
algorithm to achieve further noise reduction of the output channel
of a time-invariant beamfomer [4]. We briefly review this algorithm
here. In a given frame and frequency bin, an Instantaneous DOA
(IDOA) vector ∆t is formed from the phase differences between all
microphone pairs.

The spatial filter is formed by computing a probability that an
observed ∆t originated from the desired look direction θ. This is
done by first computing the Euclidean distance between ∆t and ∆θ ,
which is the IDOA vector generated by an ideal source originating
from θ. This distance in IDOA space is then converted to a distance
in physical space, denoted Γθt . For a linear array, this physical dis-
tance represents the absolute difference in radians between the angle
of arrival of Xt and the desired look direction θ.

In the absence of noise, the distance Γθt would be equal to zero
if ∆t = ∆θ . To reflect the presence of noise, we assume that Γθt
follows a Gaussian distribution with zero mean and variance σ2

θ , i.e.
p(Γθt ) ∼ N (0;σ2

θ). Estimates of the variance σ2
θ are made online

during non-speech segments for a discrete set of look directions.
The nonlinear spatial filter Λθt is computed as the ratio of the

probabilities of Γθt and Γθmax, defined as the distance that generates
the highest probability for the given look direction. This can be writ-
ten as

Λθt =
p(Γθt )

p(Γθmax)
(6)

Note that Λθt is a real-valued function between 0 and 1. Thus, the fil-
ter, applied to the array output signal, controls the gain only. Because
the phase is not compensated, this time-varying filter shares the same
properties as other gain-based noise suppression algorithms. It can
significantly increase the output SNR, but also cause significant dis-
tortion and artifacts.

4. LOG-MMSE ADAPTIVE BEAMFORMING

The adaptive beamformer described in Section 2 assumes no prior
knowledge of the desired source signal Dt. However, the spatial
filter described in Section 3 generates an estimate of the magnitude
of the desired source signal |D̂|. Thus, in this section we derive an
adaptive beamformer that utilizes this estimate.

4.1. Unconstrained Log-MMSE Beamforming

The first beamformer we describe is a minimum mean squared error
beamformer in the log domain. As described in Section 1, operating
in the log domain rather than in the magnitude or power spectral do-
mains has advantages related to perceptual relevance and robustness
to errors in estimated spectral magnitudes.

We now define the error function simply as the mean squared
error of the log spectra of the desired signal and the array output:

W = argmin
W

E
[
(log(|D|2)− log(|Y|2))2

]
(7)

Since we are interested in online adaptation, we replace the ex-
pectation with the instantaneous error εt.

εt =
1

2
(log(|Dt|2)− log(|Yt|2))2 (8)



We can now take the derivative of (8) with respect to the filter pa-
rameters.

∂ε

∂W
= − (log(|Dt|2)− log(|Yt|2))

|Yt|2
XtX

H
t Wt (9)

= −(log(|Dt|2)− log(|Yt|2))
Xt
Yt

(10)

Using (9) the gradient descent update rule can be written as

Wt+1 = Wt − µ
[
log(|Yt|2)− log(|Dt|2)

] Xt
Yt

(11)

The update equation (11) defines an unconstrained adaptive
beamformer. If we have reliable estimates of the desired signal
this approach may be sufficient. However, if the desired signal ap-
proaches zero, an unconstrained adaptive beamformer may approach
the degenerate solution Wt = 0. Therefore, it may be desirable to
impose a constraint on the adaptation.

4.2. Linearly Constrained Log-MMSE Beamforming

By following Frost’s derivation, we can impose a linear constraint
on the unconstrained beamformer described in Section 4.1. We now
assume that our beamformer is operating with a desired look direc-
tion that specifies C and a desired array response in that direction
that specifies F .

Thus, in this case, our objective function becomes:

εt =
1

2
(log(|Dt|2)− log(|Yt|2))2 + λ(WHC −F) (12)

Taking the gradient of (12) produces the following gradient ex-
pression:

∇Wεt = −(log(|Dt|2)− log(|Yt|2))
Xt
Yt

+ λC (13)

This produces the following constrained update expression:

Wt+1 = Wt − µ
[
(log(|Yt|2)− log(|Dt|2))

Xt
Yt

+ λC

]
(14)

which must satisfy the linear constraint

CHWt+1 = F (15)

where we have assumed a real-valued function for F so that
CHW = WHC.

The value of for λ can be found by substituting (14) into (15). Fi-
nally, by substituting this value back into (14) and rearranging terms,
we obtain the final update expression:

Wt+1 = P

[
Wt − µ(log(|Yt|2)− log(|Dt|2))

Xt
Yt

]
+ F (16)

where P and F are defined as in Section 2.

4.3. Using a variable constraint

During processing, there may be times we would like to have the
constraint active or inactive. For example, in long periods of si-
lence we would like to run the beamformer in a constrained mode
to prevent the filter weights from degenerating to the zero solution,
while during periods of desired signal activity, we would like the
beamformer to best match the estimated log spectrum of the desired

signal, irrespective of any constraints. By comparing (11) and (16),
it is obvious that these two modes of operation can be combined into
a single update equation given by

Wt+1 = P̃

[
Wt − µ(log(|Yt|2)− log(|Dt|2))

Xt
Yt

]
+ F̃ (17)

where

P̃ =

{
I − C(CHC)−1CH , if VAD = 0
I, if VAD = 1

(18)

and

F̃ =

{
C(CHC)−1F , if VAD = 0
0, if VAD = 1

(19)

4.4. Nonlinear NLMS updates

Because we are operating on log spectral values, finding an opti-
mal value of Wt requires a nonlinear iterative optimization method.
However, because of the nonlinearity between the log spectral obser-
vations and the linear beamformer weights, the objective function is
no longer quadratic. As a result, methods for improving the conver-
gence of LMS algorithms, e.g. Normalized LMS (NLMS), cannot
be applied.

In order to improve convergence, we utilize the Nonlinear
NLMS algorithm introduced in [5]. In this, method, the step size
is normalized by the norm of the gradient of the output signal,
log(|Y|2), with respect to the parameters being optimized, W. This
results in the following normalized step size expression:

µ =
µ̃(

∂ log(|Yt|2)
∂Wt

)H (
∂ log(|Yt|2)

∂Wt

) =
µ̃

XHX

|Y|2

(20)

where 0 < µ̃ < 1.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed Log-MMSE adaptive
beamforming algorithm, we performed a series of experiments on
microphone array data recorded in an office environment with a re-
verberation time of 270 ms. We used a 4-element linear microphone
array with a length of 190 mm. The microphones in the array are
electret directional elements with a cardioid directivity pattern. In-
coming audio was sampled at 16 kHz and segmented into 20 ms
frames using a Hann window with a 10 ms overlap. The frames
were then converted to the frequency domain using a STFT.

Two recordings were used for the evaluation. The first has a
user speaking directly in front of the array (0 degrees) at a distance
of 1.5 m. There is a high degree of ambient noise due to the presence
of several computers and the air conditioning. In addition, there is a
white noise interference source located at a distance of 2 m at an in-
cident angle of−40o. In the second recording, the white noise point
source was replaced by a radio playing pop music. In experiments
that required a Voice Activity Detector (VAD), the well-known algo-
rithm by Kim et al. was used [6].

We compared the performance of the conventional delay and
sum beamformer (D&S), the Frost beamformer, the Nonlinear
Spatial Filter (NSF) described in Section 3 applied to the output
of the D&S beamformer, and the proposed Log-MMSE adaptive
beamformer. The Log-MMSE beamformer was evaluated in three
modes discussed in Section 4: no constraints, a linear constraint,



PESQ
WN MUS AVG

D&S 2.26 2.14 2.20
Frost 2.26 2.10 2.18
D&S + NSF 2.14 1.99 2.06
D&S + NSF + Log-MMSE (Unc) 2.35 2.47 2.41
D&S + NSF + Log-MMSE (Con) 2.27 2.09 2.18
D&S + NSF + Log-MMSE (Var) 2.27 2.09 2.18

Table 1. PESQ values obtained by various processing algorithms
for speech captured in an office environment with a white noise in-
terference source (WN) and a music interference source (MUS). The
average performance is also shown

SNR (dB)
WN MUS AVG

D&S 12.98 12.59 12.73
Frost 13.90 13.38 13.64
D&S + NSF 20.81 21.59 21.20
D&S + NSF + Log-MMSE (Unc) 17.40 18.89 18.15
D&S + NSF + Log-MMSE (Con) 14.37 13.80 14.09
D&S + NSF + Log-MMSE (Var) 14.33 13.70 14.02

Table 2. SNR values in dB obtained by various processing algo-
rithms for speech captured in an office environment with a white
noise interference source (WN) and a music interference source
(MUS). The average performance is also shown

and a VAD-dependent constraint. In all constrained beamformer
algorithms, a distortionless constraint was used, i.e. F = 1.

Tables 1 and 2 show the PESQ scores [7] and SNR obtained
by the various algorithms. The tables show that the Frost algorithm
generates a small increase in SNR but a negligible gain in perceptual
quality, as indicated by the PESQ score. The Nonlinear Spatial Filter
provides a 7 dB increase in SNR but results in a degradation of the
PESQ score. The proposed unconstrained Log-MMSE beamformer
that uses the spatial filter to generate an estimate of the target signals
log spectrum generates both an increase in SNR of about 5.5 dB and
a 0.2 absolute increase in the PESQ score. The Log-MMSE beam-
former with a linear constraint or a VAD-dependent constraint re-
sulted in a small increase in SNR but negligible difference in PESQ.

We also performed an experiment to highlight the difference be-
tween using the complex spectrum of the target signal and using the
log spectrum of the target signal. We compared the performance of
an unconstrained adaptive beamformer that was running under an
MMSE objective function, i.e. εt = (Dt − Yt)2 versus the Log-
MMSE objective function defined in (8). We also compared the
performance when the target signal was perfectly known (using a
close-talking microphone signal) and when the target signal was es-
timated using the NSF. The PESQ scores are shown in Table 3. As
the table shows, when the reference is known completely, using a
MMSE criterion is significantly better than a Log-MMSE criterion.
This makes intuitive sense as a global optimum can be found to the
MMSE optimization, whereas the nonlinear optimization required in
the Log-MMSE case can only guarantee a local optimum. However,
when the the target signal is unknown and must be estimated, the
performance of MMSE optimization degrades significantly, losing
almost 1.2 points in PESQ score. In contrast, the Log-MMSE crite-
rion is much more robust, only losing 0.28 compared to the oracle
case.

PESQ
Criterion Target WN MUS AVG
MMSE Closetalk 3.07 3.14 3.11
Log-MMSE Closetalk 2.65 2.73 2.69
MMSE D&S + NSF 1.92 1.96 1.94
Log-MMSE D&S + NSF 2.35 2.47 2.41

Table 3. Log-MMSE vs. MMSE adaptive beamforming with oracle
and estimated target signals

6. CONCLUSIONS

In this paper we have presented a new adaptive beamforming al-
gorithm that operates according to a Log Minimum Mean Squared
Error (Log-MMSE) criterion. Most existing adaptive beamforming
algorithms operate in a “signal agnostic” manner and do not use any
knowledge about the target signal. In the proposed algorithm, an
estimate of the log spectrum of the desired signal is generated by a
nonlinear spatial filter (NSF). This estimate is then used to drive the
adaptation of a linear beamformer. This algorithm enables us to use
the high SNR output from the NSF in a linear beamformer that does
not produce artifacts or musical noise. The efficacy of the proposed
method was shown in a series of experiments that showed gains in
both SNR and PESQ.

In the future, we would like to further investigate the reasons
why the constrained or VAD-dependent modes of the Log-MMSE
beamformer did not perform as well as the unconstrained mode. In
addition, the constrained version of the algorithm can be cast into the
framework of the Generalized Sidelobe Canceler, which will enable
unconstrained nonlinear optimization. By doing so, we will be able
to explore alternative methods for estimating the optimal step size.
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