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ABSTRACT

A combined approach for estimating a feature-domain reverbera-

tion model suitable for the robust distant-talking automatic speech

recognition concept REMOS (REverberation MOdeling for Speech

recognition) [1] is proposed. Based on a few calibration utterances

recorded in the target environment, the combined approach employs

ML estimation and blind estimation of the reverberation time to de-

termine a two-slope reverberation model. Since measurements of

room impulse responses become unnecessary, the effort for training

is greatly reduced compared to [1] and compared to training HMMs

on artificially reverberated data. Connected digit recognition exper-

iments show that the proposed reverberation models in connection

with the REMOS concept significantly outperform HMM-based rec-

ognizers trained on reverberant data.

Index Terms— Dereverberation, blind estimation, reverberation

model, reverberation time, robust ASR.

1. INTRODUCTION

Reverberation caused by multi-path propagation of sound waves

from the source to the microphone in distant-talking scenarios does

not only reduce the perceived sound quality but also decreases the

performance of Automatic Speech Recognition (ASR) significantly

[2]. To increase the robustness of ASR to reverberation, either the

speech signal can be dereverberated before the features are extracted

[3] or the acoustic models of the recognizer can be adapted to the

reverberation [4].

The REMOS concept introduced in [1] combines both ap-

proaches by performing dereverberation directly in the feature do-

main based on an acoustic model consisting of clean-speech HMMs

and a ReVerberation Model (RVM). Thus, an extremely robust rec-

ognizer is achieved outperforming conventional HMM-based rec-

ognizers trained on reverberant speech data matching the acoustic

conditions of the application environment. However, the estimation

method for determining the RVMs suggested in [1] requires the mea-

surement of Room Impulse Responses (RIRs) in the environment

where the recognizer is to be used. In some important applications,

measuring a set of RIRs in the target room is either not possible or

too expensive. An alternative approach based on Maximum Likeli-

hood (ML) estimation using the reverberant feature sequences of a

few calibration utterances with known transcriptions [5] is able to

capture the effect of the early reflections [6] in the RIR very well,

but overestimates the effect of the late reflections.

Therefore, we propose a combined approach to estimate the

RVM based on the recordings of a few calibration utterances in the

target environment. In the proposed approach, the RVM is obtained

by determining the early, the late and the single-slope decay rates
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Fig. 1. Structure of a REMOS-based recognizer according to [1].

which will be defined in Sec. 3. The ML approach of [5] is used

to determine the early decay rate of the RIR in each mel channel.

Then, the single-slope decay rate in each mel channel is estimated

by a blind method for the determination of reverberation time based

on the distribution of signal decay rates [7]. Using the estimates for

the early and the single-slope decay rate, the late decay rate in each

mel channel is determined by adjustment of the single-slope decay

rate. Thus, an RVM capturing both the initial and the late reverbera-

tion with relatively high accuracy is obtained.

The paper is structured as follows: The underlying algorithms

are concisely reviewed in Sec. 2 to prepare the description of the

combined approach in Sec. 3. The performance of the proposed ap-

proach is evaluated by connected digit recognition experiments in

Sec. 4, and conclusions are drawn in Sec. 5.

2. REVIEW OF UNDERLYING ALGORITHMS

2.1. The REMOS Concept

The REMOS concept [1] uses an acoustic model consisting of a

clean-speech HMM network and a statistical RVM η for speech

recognition as illustrated in Fig. 1. In the mel-frequency spectral

(melspec) domain, the clean-speech HMM output sequence s(n)
and the output sequence h(m, n) of the reverberation model can be

combined by a feature-domain convolution in order to describe the

reverberant feature vector sequence x(n) [1]. In h(m, n), n is the

observation frame index, and m is the reverberation frame index.

The RVM η can be considered as a feature-domain representa-

tion of the RIR. As in real-world applications the RIR is usually un-

known and time-varying, a fixed feature-domain RIR representation

is not sufficient to describe the reverberation. Instead, a statistical

RVM η is introduced in [1]. The RVM exhibits a matrix structure

where each row corresponds to a certain mel channel and each col-

umn to a certain frame as shown in Fig. 2. Each matrix element

is modeled by a Gaussian Independent Identically Distributed (IID)

random processes. For simplicity, the elements are assumed to be

mutually statistically independent [1]. Thus, the RVM is completely

described by its mean matrix mH and its variance matrix σ2
H.

For recognition, an extended version of the Viterbi algorithm is

employed [1] to find the most likely path through the network of

HMMs. The reverberation model η is taken into account by an inner
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Fig. 2. Reverberation model η for observation frame n.

optimization operation determining the most likely contribution of

the current HMM state and the reverberation model to the current

reverberant observation vector x(n). As the inner optimization op-

eration determines the most likely clean-speech feature vector, it is

the core of the feature-domain dereverberation algorithm.

2.2. ML Estimation of the RVM

In [5], the feature-domain representation of the RIRs in the target en-

vironment is determined by ML estimation based on the reverberant

feature sequences of a few calibration utterances with known tran-

scriptions. For each utterance, the reverberant speech signal is seg-

mented into hyper-frames and transformed to the melspec domain.

For each hyper-frame, a speech model describing the clean-speech

hyper-frame is determined by aligning the HMM sequence of the

known transcription to the reverberant utterance. From this clean-

speech model, a reverberant speech model is derived by replacing

the mean vectors of the clean-speech model with the melspec convo-

lution of the clean means and the unknown melspec RIR representa-

tion. Then the likelihood of the reverberant hyper-frame given the re-

verberant speech feature sequence and the reverberant speech model

is maximized with respect to the melspec RIR representation. Thus,

a melspec RIR representation is obtained for each hyper-frame. By

averaging over the melspec RIR representations of all hyper-frames,

the means and the variances of the reverberation model are obtained

[5].

2.3. Blind Estimation of Reverberation via Mapping of Statisti-

cal Features

In [7], a method for blind estimation of the reverberation time based

on the distribution of signal decay rates is presented and its accurate

performance for ‘diffuse RIRs’ is shown. In the context of this paper,

a diffuse RIR, or part thereof, is defined where the energy envelope

exhibits a single exponential decay. Such an RIR can be described

in the Short-Time Fourier Transform (STFT) domain by

ln H̃(m, k) = ln P (k) + λh(k) m for m ≥ 0, (1)

where H̃(m, k) is the energy envelope of the RIR at (reverberation)

frame m and frequency bin k, λh(k) is the decay rate, and P (k)
is the frequency response of the initial reverberation frame. Based

on this model, the decay rate λh(k) can be estimated by applying a

linear fit to the logarithm of the time-frequency energy envelope. In

the following discussion, the frequency-dependence is dropped for

clarity.

The estimated probability density function (pdf) of the decay

rate of a reverberant speech signal becomes increasingly ‘skewed’

as the decay rate decreases (or equivalently as the reverberation time

T60 increases) [7]. Thus, the ‘skewness’ of the estimated pdf can be

used to estimate the decay rate of the RIR envelope. As a measure

for the ‘skewness’, the negative-side variance σ2
X−

is proposed in

[7] because of its superior properties compared to the third central

moment. The negative-side variance σ2
X−

of a random variable X is
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Fig. 3. (a) Two-slope decay model and its parameters. (b) Examples

of single-slope estimations on a two-slope decay model.

defined as the variance corresponding to a symmetrical probability

density function (pdf) f−

X (λ) with the same negative-side pdf as the

original pdf fX(λ) according to

f−

X (λ) =

{

fX(λ) for λ ≤ 0,

fX(−λ) if λ > 0.
(2)

A second-order function is used in [7] to map the observed σ2
X−

,

obtained from the reverberant speech decay rate distribution, to the

estimated true room decay rate λ̂h as

λ̂h = γ2(σ
2
X−)2 + γ1σ

2
x− + γ0. (3)

The parameters (γ0, γ1, γ2) of the mapping function are obtained

in [7] by using Polack’s statistical reverberation model [8] and two

speech fragments consisting of one male and one female sentence.

It should be noted that the parameters depend on the STFT and the

decay rate fitting implementations. Since this is a single-slope es-

timation, it will underestimate the late reverberation for non-diffuse

RIRs. In the general non-diffuse case, it is not possible to avoid

this underestimation using a single-slope estimation without selec-

tive slope fitting such as the method described by Lebart et al. [9].

3. COMBINED APPROACH

In this paper, we present a two-slope RIR model for non-diffuse

RIRs. The discrete-time two-slope decay logarithmic envelope D(t)
is extended from Pollack’s time-domain model [8] to

D(t) = λet for 0 ≤ t ≤ tm,

D(t) = (λe − λl)tm + λlt for t > tm. (4)

where λe is the decay of the early reflections arriving before the

‘mixing time’, tm, and λl is the decay of the late reverberation orig-

inating from the diffuse field. Fig. 3(a) illustrates a two-slope decay

room model and its parameters.

3.1. Late Decay Adjustment

The curves (i) and (ii) in Fig. 3(b) represent a diffuse room model

and its single-slope estimate, respectively. Since the single-slope es-

timate is able to perfectly capture the envelope of the diffuse RIR, the

curves (i) and (ii) are virtually identical. However, for the envelope

of a non-diffuse RIR as illustrated in Fig. 3(b) curve (iii), the single-

slope estimate of curve (iv) provides only a basic approximation. In

the following section, we will derive an approach for the determina-

tion of the late decay rate λl given estimates for a single-slope decay

and an early decay rate λe. Single-slope estimation using linear least

squares i.e. v = αu + β, on a two-slope model can be expressed as

[α̂ β̂]T = (UT
U)−1

U
T
v, (5)



where U is the matrix of the independent variable (time index), i.e.

U =

[

1 2 3 . . . N
1 1 1 . . . 1

]T

, (6)

N is the number of observations, and v is the vector notation for the

values of the two-slope RIR model given by (4)

v = [r (λe − λl)tm + q]T . (7)

Here, r = [0 λe 2λe . . . tmλe], tm = [tm tm . . .] and q =
[λl 2λl . . .]. Evaluating the first row of (5), the single-slope esti-

mate α̂ can be written as α̂ = av, where

ai =
12

N3 − N
·

[

i −
N + 1

2

]

, i ∈ {1, 2, . . . , N} (8)

is obtained by calculating the first row of the pseudo-inverse in (5).

Evaluating the scalar product av, the slope α̂ can be written as

α̂ = γλeg1(N, tm) − γλlg2(N, tm), (9)

where γ = (N3 − N) and

g1(N, tm) = −tm(tm − 1)(2tm − 1 − 3N) (10)

g2(N, tm) = −(2tm − 1 + N)(t − N)(t − 1 − N). (11)

The mixing time tm is assumed to be 50 ms [6] so that the values

of g1, g2 and γ can be pre-calculated. Solving (9) for λl yields the

following estimate for the late decay rate

λ̂l =
λ̂eg1(N, t̂m) − α̂/γ

g2(N, t̂m)
. (12)

Note that the above derivation can be extended to logarithmic mag-

nitudes in the STFT domain.

3.2. Implementation

We first estimate an STFT-domain representation H(m, k) of the

RIR using the single-slope method of [7]. To increase the robustness

of the frequency-dependent decay estimates from the single-slope

estimation, a rectangular window is used to smooth across the fre-

quency bins on both the calibration and the estimation stage. Trans-

forming H(m, k) to the melspec domain, we obtain the melspec RIR

representation H∗

mel(m, l), where l is the mel channel index.

Since the ML approach of [5] captures the early decay very well,

λ̂e is obtained by performing a linear fit on the first 50 ms from the

ML estimate. Based on the estimates λ̂e and α̂, for each mel chan-

nel, the late decay adjustment is carried out according to (12). Since

both λ̂e and α̂ are estimated, and tm is assumed constant, a particu-

lar adjustment may exhibit a significant estimation error. Therefore,

each adjusted late decay is smoothed according to

α̂′

l = ξ1α̂q + (1 − ξ1)E[α̂l]l, (13)

where ξ1 is the first-stage decay smoothing parameter and E[]l de-

notes the expectation operator across the mel channels. A raw ad-

justed melspec RIR representation H
(1)
mel(m, l) is then generated us-

ing λ̂e and α̂′

l. Smoothing H
(1)
mel(m, l), an improved melspec RIR

representation is obtained as

H
(2)
mel(m, l) = ξ2H

(1)
mel(m, l) + (1 − ξ2)E[H

(1)
mel(m, l)]l, (14)

where ξ2 is the second-stage smoothing parameter. The mean matrix

mH of the REMOS reverberation model is calculated by averaging

over the estimates H
(2)
mel(m, l) obtained for several utterances. For

the estimation of the variance matrix σ2
H, a heuristic approach is

used. Comparing the mean matrix and the variance matrix of the

RVMs according to [1], it is observed that σ2
H is very close to m2

H,

where the superscript denotes element-wise squaring. Therefore, the

variance matrix is obtained by calculating the element-wise square

of the mean matrix σ2
H = m2

H in the proposed approach.

4. EXPERIMENTS

Experiments with the same connected-digit recognition task as used

in [1, 5] are carried out to analyze the performance of the reverber-

ation models determined according to Sec. 3 in connection with the

REMOS concept.

4.1. Experimental Setup

In real-world applications, the proposed approach can be used as fol-

lows. If the recognizer is to be used in a new room, a few calibration

utterances with known transcriptions have to be recorded by the rec-

ognizer’s distant-talking microphone. Due to the low complexity of

the proposed combined approach, the RVM for the corresponding

room can then be calculated within a few seconds, and the REMOS-

based recognizer is ready for operation. The following experimental

setup aims at simulating this real-world scenario as accurately as

possible.

The experimental setup is identical to that of [5]. Therefore,

only the most important facts are recalled here. Static melspec fea-

tures with 24 mel channels calculated from speech data sampled at

20 kHz are used. 16-state word-level HMMs with single Gaussian

densities serve as clean-speech models. To obtain the reverberant

test data (and the reverberant training data for the training of re-

verberant HMMs used for comparison), the clean-speech TI digits

data are convolved with different RIRs measured at different loud-

speaker and microphone positions in three rooms with the charac-

teristics given in Table 1. Each test utterance is convolved with an

RIR selected randomly from a number of measured RIRs in order to

simulate changes of the RIR during recognition.

For the ML estimation of the reverberation models according to

[5], 20 calibration utterances from the TI digits training set are con-

volved with the measured RIRs from the training set and transformed

to the feature domain. Each utterance is used as one hyper-frame so

that the ML estimate is based on an average over 20 hyper-frames.

To maintain a strict separation of training data (speech and RIRs)

from the test data in all experiments, the RIRs from room C are

used as calibration set while the tests are performed in room A

and B. Comparing the closeness of the melspec RIR representation

H
(2)
mel(m, l) to the mean matrix of the exact RVM according to [1]

for room C, the smoothing parameters ξ1 and ξ2 were chosen as 0.5

and 0.5, respectively, for a trade-off between frequency character-

istics capture and outlier robustness. The estimates H
(2)
mel(m, l) are

calculated for 7 calibration utterances so that the mean matrix mH

is obtained by averaging over 7 different estimates H
(2)
mel(m, l).

4.2. Experimental Results

Fig. 4 compares the means of the RVMs for room B obtained by (a)

measuring RIRs according to [1], (b) ML estimation according to

[5], and (c) the proposed combined approach according to Sec. 3.



Room A Room B Room C

Type lab studio lecture room

T60 300 ms 700 ms 900 ms

d 2.0 m 4.1 m 4.0 m

SRR 4.0 dB −4.0 dB -4.0dB

M 20 50 70

Table 1. Summary of room characteristics: T60 is the reverberation

time, d is the distance between speaker and microphone, SRR is the

signal-to-reverberation-ratio, and M is the length of the reverbera-

tion model for the corresponding room.
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Fig. 4. Mean matrix mH of the RVM for Room B: (a) exact RVM

according to [1], (b) ML-RVM according to [5], and (c) combined

approach according to Sec. 3.

While the ML estimate (b) significantly overestimates the late rever-

beration, this part is captured with relatively high accuracy by the

proposed approach (c). Only the strong low-pass characteristic of

the room transfer function is not precisely modeled by (c).

Table 2 compares the word accuracies of conventional HMM-

based recognizers to that of the REMOS concept using RVMs es-

timated by different algorithms. The RVMs determined according

to Sec. 3 (V) outperform the ML-RMVs (IV) and the HMM-based

recognizer trained on matched reverberant data (II) in both rooms

since they also capture the effect of late reverberation with relatively

high accuracy. In room A, the performance of the RVM (V) even

approaches that of the exact RVM (III). The gain of (V) compared

to (II) and (IV) is somewhat lower in room B, since it is relatively

difficult to capture the strong low-pass characteristic of room B with

the proposed combined approach.

5. SUMMARY AND CONCLUSIONS

A combined approach for the estimation of feature-domain reverber-

ation models for robust distant-talking ASR based on the REMOS

concept [1] has been proposed in this paper. Using only a few cali-

bration utterances recorded in the target environment, the proposed

approach determines the means and variances of a matrix-valued IID

Gaussian random process. The initial frequency response and the

early decay is determined by ML estimation according to [5]. Blind

estimates of the reverberation time according to [7] are used to de-

clean Room

data A B

(I) conventional HMMs, clean training 82.0 51.5 13.4

(II) conventional HMMs, reverberant training - 66.8 54.6

(III) REMOS, exact RVM according to [1] - 77.6 71.6

(IV) REMOS, ML-RVM according to [5] - 63.0 57.3

(V) REMOS, RVM according to Sec. 3 - 74.5 60.4

Table 2. Word accuracies for the conventional HMM-based recog-

nizer trained on clean (I) and reverberant speech (II) and for the RE-

MOS concept [1] using exact RVMs (III), ML RVMs according to

[5](IV), and RVMs according to Sec. 3 (V).

termine single-slope decay estimates. These single-slope estimates

include the early decay and the late decay. Using the estimates for

the early and the single-slope decay rate, the late decay rate in each

mel channel is determined by adjustment of the single-slope decay

rate. Thus, an RVM capturing both the initial and the late rever-

beration with high accuracy is obtained. Since the parameters of

the RVM are estimated without the need for close-talking recordings

or RIR measurements, the effort for training is reduced compared

to the estimation method proposed in [1], and it is greatly reduced

compared to the training of HMMs on artificially reverberated data.

Simulation results of a connected digit recognition task confirm that

using the reverberation models obtained by the proposed combined

approach in the REMOS concept significantly outperforms the rever-

beration models based on ML estimation [5] and also conventional

HMM-based recognizers trained on matched reverberant data.
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