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ABSTRACT 
The direct-to-reverberant energy ratio has long been recognized as 
an absolute auditory cue for sound source distance perception in 
listeners. Traditional methods to extract this energy ratio are based 
on post-processing of the estimated room impulse response, which 
is computationally expensive and inaccurate in practice. An 
alternative is based on estimating the energy arriving from the 
azimuth of the direct source, under the assumption that reverberant 
components result in a spatially-diffuse sound field. We propose a 
binaural equalization-cancellation technique to calculate this 
energy ratio by locating the source in a delay-line structure, and go 
on to demonstrate its potential as a distance cue for both simulated 
and real data. The system is integrated with a Bayesian inference 
framework, particle filtering, to handle the nonstationary of 
energy-based measurements. Experiments on simulated room data 
showed the resulting computational model is capable of estimating 
source distance based on reverberation information. 

1. INTRODUCTION 
Which auditory cues underlie distance judgments? While sound 
source intensity varies with distance, raw intensity information 
available to a listener conflates intrinsic sound source power 
variations and the effect of changing source-receiver distance. 
Variations in intensity cues over time can provide relative distance 
information to distinguish whether the source is approaching or 
moving away from the listener. In contrast, the direct-to-
reverberant energy ratio (DRR) appears to contain the information 
necessary for listeners to perform absolute distance judgment, 
especially for far-field sources [1]. In a reverberant space, the 
energy contained in late reverberations can be considered as a 
function of source power and independent of the sound source 
location relative to reflective surfaces. The ratio between direct 
energy and reverberant energy can thus remove the source power 
effect to behave as an absolute distance cue while the former 
retains the information via its inverse relation to distance. 

Listeners’ ability to determine source distance from 
reverberation has been extensively studied [2-5]. Judgments are 
more accurate in a reverberant space than in an anechoic space and 
the judgment deviation is low among experiments [2]. Mershon 
and Bowers [3] further suggested that listeners treat reverberation 
as an absolute distance cue by giving accurate distance judgments 
at first stimulus presentation. Zahorik [5] concluded that the 
principal role of the DRR cue is to provide absolute distance 
information rather than to support fine distance discriminations. 
Consequently, DRR is poor as a relative cue. Digital reverberation 
algorithms which enable virtual auditory displays have been used 
in a series of psychophysical studies [4, 6, 7], whose outcomes also 
support the hypothesis that DRR cue has a great influence on 
listeners’ ability to estimate sound source distance. 

Bronkhorst and Houtgast [7] proposed a computational model 
to predict human distance judgment in a controlled condition 
where the DRR cue is dominant. This model demonstrated an 
accurate prediction on subjects’ perceived distance based on the 

knowledge of certain acoustical properties of the environment 
(room volume, reverberation time and source directivity) using 
monaural data. Other models based on binaural signals used either 
prior knowledge of environment (e.g. room impulse responses [8]) 
or extensive training data [9] to estimate source distance. While 
these studies attempted to demonstrate that distance estimation can 
be further improved with binaural input, neither emphasized the 
role of directional information. 

The first step in computing DRR is to segregate the direct and 
reverberant signals from the acoustic mixture. A common approach 
uses the difference in arrival time of the two components [7], 
usually applied by specifying an integration window for the room 
impulse response (e.g. treating leading 4 ms portion of the signal as 
direct) to determine the direct sound energy. However, it is 
difficult to extract a precise long room impulse response by de-
convolving the raw signal in a reasonable run time [10]. 

Unlike the temporal domain schemes outlined above, we 
explore the possibility of performing direct/reverberant energy 
segregation based on estimated source direction. By removing the 
energy of a target signal which occupies a particular spatial region, 
the reverberant signal can be identified by its diffuse (i.e non-
directional) characteristic. An adaptive sub-band scheme proposed 
by Liu et al. [11] to address a different problem, that of separating 
multiple sources motivates our proposed approach. Their two-
microphone system exploits location information to steer 
independent nulls that suppress the strongest interference in each 
time-frequency region, using a dual delay-line structure. We adapt 
this technique to extract signal energy for each angular position as 
a mean of separating direct signal from reverberant signal. The 
result is transformed into a DRR value which is then used to derive 
a likelihood function within a Bayesian inference system for sound 
source distance estimation. 

2. PROPOSED SYSTEM 

2.1. EC-DRR System Overview 
This section describes a system for DRR estimation based on 
source directional information. It is fundamentally an equalization-
cancellation (EC) operation applied on the binaural signal. The EC 
concept was proposed to explain the masking suppression process 
for situations in which there is only one noise source [12]. 
Equalization renders the magnitudes of noise components to be 
identical between channels, while cancellation subtracts the noise 
component in one channel from that in the other channel. In our 
application of the EC principle, the direct signal, which is 
identified by its angular position, is the “noise” component. 

The EC based DDR estimation system is outlined in Fig. 1. 
First, successive windowed frames of a binaural signal are 
processed by a pair of N-channel gammatone filterbanks [13]. Next, 
individual filter outputs feed two binaural interaction processes, 
cross-correlation (CC) and equalization-cancellation (EC), 
operating on an M-element delay line. A cross-frequency 
integration stage enables robust localization of the direct sound 
source and estimation of the source power distribution as a 



function of interaural delay. Finally, a single DRR value is 
generated for each frame of data input. The direct energy is 
estimated via azimuthal information from the source localizer 
which is used to select the direct source power at the corresponding 
delay-line index, denoted jsource. The DRR is estimated as the ratio 
of direct energy to reverberant energy, the latter computed as the 
residual of total signal energy S after subtraction of the direct 
energy component (Eq. 1). 
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Fig. 1. Schematic diagram of EC-DRR system 

2.1.1. Cross-correlation 

Cross-correlation (Eq. 2) of the left and right filterbank outputs, 
XL(t) and XR(t), is inspired by Jeffress’ coincidence detection 
model [14]. The coincident position along the delay-line, which is 
also known as interaural time difference (ITD), helps determine the 
source azimuthal location. Here, ITD is estimated by identifying 
the maximum value of averaged CC over frequency (Eq. 3). 
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2.1.2. Equalization-cancellation 

A block diagram of the delay-line EC module is shown in Fig. 2. 
The in-phase position of a target source in one channel with respect 
to the other channel is determined by the azimuthal information 
derived above. The in-phase signal components in both channels 
are assumed to be identical after equalization and can be cancelled 
by subtracting one from the other. One of the two channels is 
selected as the delay-channel which is compensated by 
equalization and delayed prior to cancellation. Power in the non-
delayed channel is computed as Eq. 4  
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where T is number of samples within a frame. The compensation 
factor E(f) used by the equalization block is updated every frame to 
generate Ye, the compensated delay-channel signal. 
 

 (5)
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The delayed channel is equalized with respect to the other channel 
to compensate for difference in intensity captured through the two 
microphones. The cancellation block subtracts the compensated 
delayed signal from the non-delayed channel and accumulates the 
residual energy for each delay 
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The estimated direct energy Dj(f) represented by the cancelled 
component is integrated with those from other frequency channels 
in the source power extractor as 
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Fig. 2. EC module at i-th frequency channel in EC-DRR system. 

2.2. Qualitative Investigation of EC-DRR 

2.2.1. Evaluation of DRR concept 

Ideally, DRR is a quantity that varies only with source distance and 
is independent of source power. These assumptions can be used to 
examine the effectiveness of the proposed EC-DRR system. A pink 
noise source with constant power was used to generate simulated 
audio sequences in an 18m by 18m by 2.75m rectangular space 
using Roomsim [15]. The distance between a simulated listener 
(KEMAR head model) and the noise source was increased from 
2m to 11m with 0.31s reverberation time. The resulting binaural 
signals were converted into DDR values by the EC-DRR system. 
Calculated DDR increases as distance decreases in this simulated 
case shown at the upper part in Fig. 3, suggesting that the EC-DDR 
system does generate a distance related feature. The lower part in 
Fig. 3 displays total energy and estimated direct energy and 
corresponding reverberant energy as a function of source distance. 
The total and direct energy increased with decreasing distance. 
However, the predicted constant reverberation energy was not 
obtained. Instead, the estimated reverberant component also 
increased with decreasing distance, albeit at a slower rate than the 
estimated direct energy. This outcome may be due to non-ideal 
direct signal extraction in the delay-line structure as well as the 
limited number of reflected surfaces employed in Roomsim. 



 

 
Fig. 3. DRR calculated by EC-DRR system (upper) and its 
segregated components (lower). 

 
Fig. 4. DRR for real data; noise source (left); speech source (right). 

 
Fig. 5. DRR for simulated data; anechoic (left), reverberant (right). 

2.2.2. Real data 

Real test sequences collected from a 9m x 6m x 4m studio room 
were processed to compare with the simulated case. Two different 
static sources, pink noise or speech, were placed in front of a pair 
of microphones which were 10.6 cm apart. Eighteen different 
distances were chosen from 0.75m to 5m at 0.25m intervals. 
Recorded sequences for each distance were 10 s long and 
processed in 200 ms frames to obtain 50 DDR values per distance, 
and 900 in total. These estimates are depicted in Fig. 4 with respect 
to their distance to noise or speech source along with their mean 
and standard deviation. Both speech and noise show a clear 
relationship between source distance and log(1/DDR) for distances 
up to around 2.5 m. Thereafter, DDR shows less dependence on 
distance. The noise source has a narrower DDR distribution than 
that of speech source, and the width of the distribution narrows 
with distance. The somewhat wider DRR distribution for the 
speech source shows that the output of our EC-DDR system is not 
perfectly independent of source power. 

2.2.3. Simulated data 

To verify that reverberation contributed to the variation of DDR 
with distance, the same set of spatial configurations as that used in 
the real room recordings were simulated using Roomsim to 
evaluate the effect of reverberant (T60=0.76s) versus anechoic 
conditions. A speech source was used, with responses collected at 
the ears of simulated KEMAR head model. 1000 DDR values were 
collected with distance arbitrarily from 0.75 m to 5 m. The distance 
space was discretized into 18 states. Fig. 5 confirms the presence 
of a systematic DRR effect in the reverberant condition but not in 
the anechoic space. The observation of an effect up to 2.5 m 
suggests that the room volume might impose a constraint upon the 
effective DDR operating range. 

 
Fig. 6. EC-DRR likelihood function for source distance estimator. 
The left panel shows a Gaussian mixture model (GMM) where 
each mixture component is mapped to a discrete distance. The right 
panel shows the distance likelihood function derived from the 
GMM for the DDR value shown by the dotted line. 

2.3. EC-DRR GMM 
Given a DRR observation measured from the current frame, it is 
possible to obtain a likelihood function (Fig. 6) which estimates 
source-listener distance based on the previously collected training 
data in the same environment. Training data is stored in the form of 
a Gaussian mixture model (GMM). Each Gaussian is mapped to a 
discretized distance value with mean and variance describing the 
distribution of DRR measurements around this distance range. In 
the schematic example of Fig. 6, the distance space is discretized 
into 8 segments and forms an 8-element GMM used to derive the 
distance likelihood function. 

The proposed EC-DRR GMM parameters need to adapt to 
changes in reverberation properties, e.g. reverberation time and the 
location of reflectant surfaces. Given a set of training data for the 
current environment, GMM parameters can be learned through EM 
[16]. There is no guarantee that EM will converge to a global 
maximization unless appropriate initial conditions are used. 
Equations 9-13 describe how the means μ(i) and variances σ2(i) of 
the EC-DRR GMM are initialized based on the statistics 
(γrange/max/min) of L training data items for a K-element GMM. Note 
that DRR is expressed as its log-inverse, log(1/DRR). The distance 
space is uniformly discretized into K states. The smallest sampled 
distance state is mapped to the first Gaussian element. 
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The effect is to initialize components at smaller distances with 
higher variances, while component means increase logarithmically 
with distance. An example can be seen at the left panel of Fig. 6. 

3. EVALUATION 
In previous work [17], we have used dynamic cues to distance such 
as motion parallax and acoustic time-to-contact (or τ), within a 
particle filtering framework [18]. Here, we investigate the 
integration of the EC-DRR likelihood function into that framework. 
The resulting system then uses both binaural cross-correlation and 
monaural intensity measurements to infer source distance. The 
intensity-based acoustic τ cue is only applicable for sound sources 
with constant power, e.g. white noise, since it assumes that all 
changes in observed intensity are due to changes in distance and 
not in intrinsic source power. The introduction of the EC-DRR cue 
relaxes the constant power constraint, allowing the processing of 
nonstationary sources such as speech and music. 

Particle filtering is an iterative application of the operations 
which alter the state variables and associated particle weights 
based on models of the sound source dynamics and the likelihood 
of the current observations. Particles represent hypotheses 
distributed in the target state space. Each iteration of the PF 
algorithm has three stages: prediction, update and resampling. At 
the update stage of particle filtering, cues to distance are fused by 
multiplying the likelihood functions for each independent cue (i.e. 
EC-DRR, acoustic τ and motion parallax) for renewing each 
particle’s likelihood weight. 

 
Fig. 7. Average estimation error in log2(metres) for various 
auditory distance estimation algorithms within a particle filtering 
framework. MP: motion parallax; AT: acoustic τ. 

 
A similar experimental setup as that used in [17] was employed, 
viz. a single static sound source, either pink noise or speech, was 
placed in the centre of a 18m by 18m by 2.75m room space with a 
0.76s reverberation time. At each time step, the simulated listener 
moved either straight ahead or ±20◦ forward (or more when 
necessary to avoid collision with the room boundary). Fig.7 
presents the average distance estimation error along time over 30 
different listener trajectories, each of which has 60 time steps 
(advancing in 0.75 s), 45 s in total. 

We compared four different simulation settings in the 
experiments. All used the motion parallax cue which is based on 
triangulating the successive azimuth values relative to a known 
listener movement baseline. Two conditions additionally used the 
DRR cue, while one employed acoustic τ.  This latter condition 
was applied only for the noise case due to the aforementioned 
issues with acoustic τ for non-stationary sources.  

In general, all four methods gave more accurate estimates 
when information was pooled over more observations. The 
addition of the DRR cue produced a clear benefit for the speech 
source, but the benefit was less obvious in the case of noise. The 
method with DRR activated showed a better rate of convergence to 
the stable phase with a lower estimation error.  

4. CONCLUSIONS 
A new scheme to use reverberation information in estimating 
sound source distance is proposed based on binaural equalization-
cancellation in a delay-line structure. The direct-to-reverberant 
energy ratio, which can serve as an absolute auditory distance cue, 
is estimated. The direct energy component of the source is 
estimated based on the azimuthal location of the source while the 
remainder is attributed to the diffuse reverberant component. 
Integrated alongside motion-based cues to distance in a particle-
filtering framework, the addition of the direct-to-reverberant 
energy ratio cue leads to significant improvements in distance 
estimation for speech sources in a moderate-to-high reverberant 
space. Future work will develop the multiple source subtraction 
technique in delay-line structure to remove strong early 
reverberation or interfering sources. 
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