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ABSTRACT

This paper deals with the problem of Adaptive Noise Cancella-
tion (ANC) when only a corrupted speech signal with an additive
Gaussian white noise is available for processing. Kalman filter-
ing is known as an effective speech enhancement technique, in
which speech signal is usually modeled as autoregressive (AR)
model and represented in the state-space domain. All the ap-
proaches based on the Kalman filter proposed in the past, in this
context, operate in two steps: they first estimate the noise vari-
ances and the parameters of the signal model and secondly esti-
mate the speech signal. In this paper the estimation of the noise
variances is made by reformulating and adapting the Mehra ap-
proach. The estimation of time-varying AR signal model is based
on robust recursive least-square algorithm with variable forget-
ting factor. The proposed algorithm provides improved state es-
timates at little computational expense.

1. INTRODUCTION

Speech enhancement using a single microphone system
has become an active research area for audio signal en-
hancement. The aim is to retrieve the desired speech sig-
nal from the noisy observations. The approaches based on
the Kalman filter reported in the literature [1] [2] [3] [4]
[5] [6] differ essentially one from the other by the choice
of the algorithm used to estimate the parameters of such a
model, the models adopted for the speech signal and the
additive noise.
In [1][2] [4] [5] and [6] the noise under a simplified as-
sumption is considered as a white Gaussian process, but in
[3] the noise is considered colored and modelled as an AR
process. The speech signal is modelled as an AR process
except in [4] where it is modelled as an ARMA process.
In this approach the signal is modelled as an AR process.
The estimation of time-varying AR signal model is based
on robust recursive least square algorithm with variable
forgetting factor. The variable forgetting factor is adapted
to a nonstationary signal by a generalized likelihood ratio
algorithm through so-called discrimination function, de-
veloped for automatic detection of abrupt changes in sta-
tionarity of signal. The estimation of the driving noise
variance and of the additive noise variance are handled

after a preliminary Kalman filtering. The algorithm pro-
vides improved state estimates at little computational ex-
pense. A distinct advantage of the proposed algorithm is
that a VAD is not required.
This paper is organised as follows. In Section II we present
the speech enhancement approach based on the Kalman
filter algorithm. Section III is concerned with the pre-
sentation of the estimation of the AR parameters and the
process variances. The simulation results are the subject
of Section IV.

2. NOISY SPEECH MODEL AND KALMAN
FILTERING

The speech signals(n) is modeled as apth-order order AR
process

s(n) =
p∑

i=1

ai(n)s(n− i) + u(n) (1)

y(n) = s(n) + v(n) (2)

wheres(n) is thenth sample of the speech signal,y(n) is
thenth sample of the observation, andai(n) is theith AR
parameter.
This system can be represented by the following state-
space model

x(n) = F(n)x(n− 1) + Gu(n) (3)

y(n) = Hx(n) + v(n) (4)

where

1. the sequencesu(n) andv(n) are uncorrelated Gaussian
white noise sequences with the zero means and the
variancesσ2

u andσ2
v

2. x(n) is thep × 1 state vector

x(n) = [s(n− p+ 1) · · · s(n)]T
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3. F(n) is thep × p transition matrix

F(n) =


0 1 · · · 0
...

...
...

...
0 0 · · · 1

ap(n) ap−1(n) · · · a1(n)


4. G andH are, respectively, thep×1 input vector and

the1 × p observation row vector which is defined
as follows

H = GT =
[

0 0 · · · 0 1
]

The standard Kalman filter [7] provides the updating state-
vector estimator equations

e(n) = y(n)−Hx̂(n/n− 1) (5)

K(n) = P(n/n− 1)HT ×

×
[
HP(n/n− 1)HT + σ2

v

]−1
(6)

x̂(n/n) = x̂(n/n− 1) + K(n)e(n) (7)

P(n/n) = [I−K(n)H]P(n/n− 1) (8)

x̂(n+ 1/n) = F(n)x̂(n/n) (9)

P(n+ 1/n) = F(n)P(n/n)FT (n)
+ GGTσ2

u (10)

where

1. x̂(n/n − 1) is the minimum mean-square estimate
of the state vectorx(n) given the pastn− 1 obser-
vationsy(1), . . ., y(n− 1)

2. x̃(n/n− 1) = x(n)− x̂(n/n− 1) is the predicted
state-error vector

3. P(n/n − 1) = E[x̃(n/n − 1)x̃T (n/n − 1)] is the
predicted state-error correlation matrix

4. x̂(n/n) is the filtered estimate of the state vector
x(n)

5. x̃(n/n) = x(n)− x̂(n/n) is the filtered state-error
vector

6. P(n/n) = E[x̃(n/n)x̃T (n/n)] is the filtered state-
error correlation matrix

7. e(n) is the innovation sequence

8. K (n) is the Kalman gain

The estimated speech signal can be retrieved from the state-
vector estimator

ŝ(n) = Hx̂(n/n) (11)

The parameter estimation (the transition matrix and noise
statistics) is presented in the next section.

3. PARAMETER ESTIMATION

The estimation of the transition matrix, which contains
the AR speech model parameters, was made using a adap-
tation of the robust recursive least square algorithm with
variable forgetting factor proposed by Milosavljevic et al.
[8]. The estimation of driving noise varianceσ2

u and of
additive noiseσ2

v was derived using the property of the
innovation sequence, obtained after a preliminary Kalman
filtering with an initial gain by reformulating and adapting
the approach proposed in control by R. K. Mehra [9].

3.1. Estimation of the Transition Matrix

In our approach, gettingF(n) requires the AR parameter
estimation. The equation (3) can be rewritten in the form

s(n) = xT (n− 1)θ(n) + u(n) (12)

where

θ(n) =
[
ap(n) ap−1(n) · · · a1(n)

]T
(13)

The robust recursive least square approach estimates the
vectorθ̂(n) by minimising the M-estimation criterion [8]

Jn =
1
n

n∑
i=1

λn−iρ
[
ε2(i)

]
(14)

where

ψ(x) = ρ′(x) = min

[
|x|
σ2

u

,
∆
σu

]
sgn(x) (15)

is the Huber influence function and∆ is a chosen constant.
The true state vectorx(n) used in (12) is unknown but can
be approximated by the state-vector estimatorx̂(n/n). In
this case the robust recursive least square approach gives
the estimation equations

ε(i) = Hx̂(i/i)− x̂T (i− 1/i− 1)θ̂(i− 1) (16)

T(i) = x̂T (i− 1/i− 1)Q(i− 1)

g(i) =
Q(i− 1)x̂(i− 1/i− 1)

λ(i) + ψ′ [ε(i)]T(i)x̂(i− 1/i− 1)
(17)

Q(i) =
1
λ(i)

[Q(i− 1)− g(i)T(i)ψ′ [ε(i)]] (18)
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θ̂(i) = θ̂(i− 1) + Q(i)x̂(i− 1/i− 1)ψ [ε(i)] (19)

The forgetting factorλ(i) is a data weighting factor that is
used to weight recent data more heavily and thus to per-
mit tracking slowly varying signal parameters. If a non-
stationary signal is composed of stationary subsignals the
estimation of the AR parameters can be given by using a
forgetting factor varying betweenλmin andλmax. The
modified generalized likelihood ratio algorithm is used
for the automatic detection of abrupt changes in station-
arity of signal. This algorithm uses three models of the
same structure and order, whose parameters are estimated
on fixed length windows of signal. These windows are
[i−N + 1, i], [i+ 1, i+N ] and [i−N + 1, i+N ], and
move one sample forward with each new sample. In the
first step of this algorithm is calculated the discrimination
function

D(i,N) = L(i−N + 1, i+N)− L(i−N + 1, i)
− L(i+ 1, i+N) (20)

where

L(a, b) = (b− a+ 1)ln

[
1

b− a+ 1

b∑
i=a

ε2(i)

]
(21)

denotes the maximum of the logarithmic likelihood func-
tion. In the second step a strategy for choosing the variable
forgetting factor is defined by lettingλ(i) = λmax when
D = Dmin andλ(i) = λmin whenD = Dmax, as well
as by taking the linear interpolation between these values.

3.2. Estimation of Additive Noise Statistics

Let the predicted state-error vectorx̃(n/n− 1) = x(n)−
x̂(n/n− 1), P(n/n− 1) = E[x̃(n/n− 1)x̃T (n/n− 1)]
the predicted state-error correlation matrix andree(k) =
E[e(n)e(n−k)] the autocorrelation of the innovation pro-
cesse(n). Using the standard Kalman filter equations and
the state-space model equations, the innovation autocorre-
lation function is obtained:

ree(k) =
{
T1(n) [T2(n)− T3(n)] k > 0

T4(n) k = 0 (22)

where:

T1(n) = H

{
k−1∏
i=1

F[I−K(n− i)H]

}
F

T2(n) = P(n− k/n− k − 1)HT

T3(n) = K(n− k)[HP(n− k/n− k − 1)HT + σ2
v ]

T4(n) = HP(n/n− 1)HT + σ2
v

It is known that in the optimal case the innovation process
e(n) is orthogonal to all past observationsy(1), y(2), · · · ,
y(n − 1) and consists of a sequence of random variables
that are orthogonal to each other, as shown byree(k) = 0
for k > 0 [10]. If a suboptimal gainK0 and the estimation
of transition matrixF̂ were used, the innovation sequence
in general is not a white process andree(k) 6= 0 for k > 0.
In the steady-state, using the suboptimal gainK0, P(n−
k/n − k − 1) ' P0 and the innovation autocorrelation
functionr0ee(k) is:

r0ee(0) = HP0HT + σ2
v (23)

r0ee(k) = H[F̂(I−K0H)]k−1F̂[P0HT −K0r
0
ee(0)]

k > 0 (24)

It is very difficult to estimate the predicted state-error cor-
relation matrixP0 in terms ofF̂, r0ee(k) andK0, but us-
ing the innovation autocorrelation function (23)(24) it is
easy to estimateP0HT , a linear combination of their col-
umn. Using (24) the following relationship forP0HT is
obtained [9]:

P0HT = K0r
0
ee(0)+
HF̂

H[F̂(I−K0H)]1F̂
...

H[F̂(I−K0H)]p−1F̂


−1 

r0ee(1)
r0ee(2)

...
r0ee(p)

 (25)

Using r0ee(0) given by (23), the expression of additive
noise varianceσ2

v is:

σ2
v = r0ee(0)−HP0HT (26)

3.3. Estimation of Driving Process Statistics

The estimation of driving noise variance is based on the
equation of the update of the state-error covariance ma-
trix. However, we need to reformulate this expression in
a way that it becomes convenient for computation of the
driving noise variance. We need this reformulation be-
cause we can easily estimateP(n/n− 1)HT (in our case
P0HT ) and notP(n/n − 1). Using the Riccati equation
[7] the update of the state-error covariance matrix can be
rewritten by:

P(n/n− 1) =
FP(n− 1/n− 2)FT + GGTσ2

u +
FK(n− 1)KT (n− 1)ree(0)FT −
FK(n− 1)HP(n− 1/n− 2)FT −
FP(n− 1/n− 2)HT K(n− 1)FT (27)
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With the suboptimal gainK0 and the estimation of transi-
tion matrixF̂ in the steady-state, the equation (27) is given
by:

P0 = F̂P0F̂T + GGTσ2
u + V (28)

where

V = F̂[K0KT
0 r

0
ee(0)−K0HP0 −P0HT K0]F̂T

Now, substitutingP0 in the right side of (28), afterk − 1
substitutions the following equation is obtained:

P0 = F̂kP0(F̂k)T +
k−1∑
i=0

F̂iGGT (F̂i)Tσ2
u

+
k−1∑
i=0

F̂iV(F̂i)T (29)

To reformulate (29) in terms ofP0HT we premultiply
with H and postmultiply with(F̂−k)T HT . Using the
symmetry property ofP0 andG = HT , the following
expression of driving noise variance is obtained:

σ2
u =

(P0HT )T (F̂−k)T HT −HF̂kP0HT∑k−1
i=0 HF̂iHT H(F̂i−k)T HT

−
∑k−1

i=0 HF̂iV(F̂i−k)T HT∑k−1
i=0 HF̂iHT H(F̂i−k)T HT

(30)

We can see that the denominator of equation (30) is a
combination of termsHF̂i, (0 ≤ i ≤ k − 1), and
H(F̂−j)T HT , (1 ≤ j ≤ k). If we pay attention to the
particular structure of̂F andH we remark thatH(F̂−j)T HT

is null for 1 ≤ j ≤ p−1. This is the reason why the mod-
ification of the equation (28) was needed and a value ofk
greater or equal top will be chosen.

4. SIMULATION RESULTS

The approach was tested using a speech signal and an ad-
ditive Gaussian white noise. The speech signals are sen-
tences from the TIMIT database. Table 1 offers a compar-
ison with others approaches, by showing averaged SNR
gain based on 10 speech signals and 10 noise simulations
for each speech signal.
For input SNR between -5 and 15 dB the proposed method
provides better results than three previously proposed meth-
ods by the author [2] [6] [5] and Gibson’s algorithm [3].
Gibson’s algorithm [3], needs two to three iterations to get
the highest SNR gain. Its computational requirements are
higher, since a voice activity detector is required to deter-
mine silence periods.

Out SNR
In SNR [3] [2] [6] [5] prop

(dB) (dB) (dB) (dB) (dB) (dB)

-5.00 2.46 -2.52 -1.46 2.61 2.82
0.00 4.57 2.61 2.65 4.95 5.17
5.00 7.96 6.83 7.08 8.52 8.73

10.00 11.92 10.95 11.46 12.71 13.08
15.00 16.00 15.08 15.34 16.86 17.21

Table 1: OUTPUT SNR FOR AN INPUT SPEECHSIGNAL

PLUS WHITE NOISE
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