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ABSTRACT

This paper deals with the problem of speech enhancement when
a corrupted speech signal with an additive colored noise is the
only information available for processing. Kalman filtering is
known as an effective speech enhancement technique, in which
speech signal is usually modeled as autoregressive (AR) process
and represented in the state-space domain. In the above context,
all the Kalman filter-based approaches proposed in the past, op-
erate in two steps: first, the noise and the signal parameters are
estimated, and second, the speech signal is estimated by using
Kalman filtering. In this paper a new sequential estimators are
developed for sub-optimal adaptive estimation of the unknown a
priori driving processes variances simultaneously with the sys-
tem state. A robust recursive least-square algorithm with vari-
able forgetting factor is used for the estimation of the speech
AR parameters and a recursively least-squares lattice algorithm
is used for the estimation of the noise AR parameters. The algo-
rithm provides improved speech estimate at little computational
expense.

1. INTRODUCTION

Kalman filtering is known as an effective speech enhancement
technique, in which speech signal is usually modeled as autore-
gressive (AR) process and represented in the state-space domain.
Many approaches using Kalman filtering have been referenced in
the literature. They usually operate in two steps: first, the noise
and the signal parameters are estimated, and second, the speech
signal is estimated by using Kalman filtering. These approaches
differ essentially one from the other by the choice of the algo-
rithm used to estimate the parameters of such model, the models
adopted for the speech signal and the additive noise.
In [1], [2] , [3] and [4] the noise under a simplified assumption is
considered as an white Gaussian process, but in [5], [6] and [7]
the noise is considered colored. Paliwal and Basu [1] have used
estimates of the speech signal parameters from clean speech, be-
fore being contaminated by white noise. They then used a de-
layed version of Kalman filter in order to estimate the speech
signal. In [2], Oppenheim et al. have used a time-adaptive algo-
rithm to adaptively estimate the speech model parameters and
the noise variance. Gannot et al. [7] have proposed the use
of EM (Espectation-Maximisation) algorithm to iteratively es-
timate the spectral parameters of speech and noise parameters.
The enhanced speech signal was obtained as a byproduct of the
parameter estimation algorithm. In [6], the coefficients of the

AR processes and the AR driving processes variances are esti-
mated based on EM algorithm. Gabrea and O’Shaughnessy [4]
have proposed estimating the noise and driving process variances
using the property of the innovation sequence, obtained after a
preliminary Kalman filtering with an initial gain.
In this paper the speech signal and the additive noise are mod-
eled as the AR processes and a new adaptive Kalman filter based
method is proposed to recover the speech signal from a sequence
of the speech signal corrupted by an additive colored noise.
The estimation of time-varying AR speech model parameters is
based on robust recursive least square algorithm with variable
forgetting factor. The variable forgetting factor is adapted to a
nonstationary signal by a generalized likelihood ratio algorithm
through so-called discrimination function, developed for auto-
matic detection of abrupt changes in stationarity of signal. The
sequential estimators are derived for sub-optimal adaptive esti-
mation of the unknown a priori driving processes variances si-
multaneously with the system state by reformulating and adapt-
ing the classical approach used for control applications. A lim-
ited memory algorithm is developed for adaptive correction of
the a priori statistics, which are intended to compensate for time
varying model errors. The algorithm involves using the state cor-
rections to estimate the driving processes variances and provides
improved state estimates at little computational expense.
The paper is organized as follows. In Section II we present the
speech enhancement approach based on the Kalman filter algo-
rithm. Section III is concerned with the estimation of AR pa-
rameters and driving processes statistics. Simulation results are
the subject of Section IV.

2. NOISY SPEECH MODEL AND KALMAN
FILTERING

The speech signals(n) and the additive noisev(n) are modeled
as thepth-order order andqth-order AR processes:

s(n) =

pX
i=1

ais(n− i) + u(n) (1)

v(n) =

qX
j=1

bjv(n− j) + w(n) (2)

y(n) = s(n) + v(n) (3)

wheres(n) is the nth sample of the speech signal,v(n) is the
nth sample of the additive noise,y(n) is thenth sample of the
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observation,ai is the ith AR speech model parameter andbj is
the jth AR noise model parameter.
This system can be represented by the following state-space
model:

x(n) = Fx(n− 1) + d(n) (4)

y(n) = Hx(n) (5)

where:

1. x(n) is the(p + q) × 1 state vector

x(n) = [s(n−p+1), · · · , s(n), v(n−q+1), · · · , v(n)]T

(6)

2. d(n) is the(p + q) × 1 vector

d(n) = [0, · · · , 0, u(n), 0, · · · , 0, w(n)]T (7)

3. the sequencesu(n) and w(n) are uncorrelated Gaussian
white noise sequences with zero means and variances
σ2

u(n) andσ2
w(n)

4. F is the(p + q) × (p + q) transition matrix

F =

�
Fs 0
0 Fv

�
(8)

Fs =

2
666664

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ap ap−1 ap−2 · · · a1

3
777775 (9)

Fv =

2
666664

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
bq bq−1 bq−2 · · · b1

3
777775 (10)

5. H is the1 × (p + q) observation row vector

H = [0, · · · , 0, 1, 0, · · · , 0, 1] (11)

The standard Kalman filter [8] provides the updating state-vector
estimator equations:

e(n) = y(n) −Hx̂(n/n− 1) (12)

K(n) = P(n/n− 1)H×
× [HP(n/n− 1)HT ]−1 (13)

x̂(n/n) = x̂(n/n− 1) + K(n)e(n) (14)

P(n/n) = [I−K(n)H]P(n/n− 1) (15)

x̂(n+ 1/n) = Fx̂(n/n) (16)

P(n+ 1/n) = FP(n/n)FT + Q(n) (17)

where:

1. x̂(n/n− 1) is the minimum mean-square estimate of the
state vectorx(n) given the past observationsy(1), . . .,
y(n− 1)

2. x̃(n/n− 1) = x(n)− x̂(n/n− 1) is the predicted state-
error vector

3. P(n/n− 1) = E[x̃(n/n− 1)x̃T (n/n− 1)] is the pre-
dicted state-error correlation matrix

4. x̂(n/n) is the filtered estimate of the state vectorx(n)

5. x̃(n/n) = x(n) − x̂(n/n) is the filtered state-error vec-
tor

6. P(n/n) = E[x̃(n/n)x̃T (n/n)] is the filtered state-error
correlation matrix

7. Q(n) = E[d(n)dT (n)] is the driving processes correla-
tion matrix

8. e(n) is the innovation sequence

9. K (n) is the Kalman gain

The estimated speech signal can be retrieved as thepth compo-
nent of the state-vector estimatorx̂(n/n).

3. PARAMETER ESTIMATION

The estimation of the driving processes variances is derived un-
der the assumption of the constant values overN samples by
reformulating and adapting the approach proposed in control by
Myers and Tapley [9]. The estimation of the transition matrix,
which contains the AR models parameters, was made using a
adaptation of the robust recursive least square algorithm with
variable forgetting factor proposed by Milosavljevic et al. [10].

3.1. Estimation of Driving Processes Variances

The estimation of driving processes variances needed to compute
the matrixQ(n) is derived under the assumption of the constant
variance overN samplesu(n), u(n−1), · · · , u(n−N+1) and
w(n), w(n−1), · · · , w(n−N+1), respectively by reformulat-
ing and adapting the approach proposed in control by Myers and
Tapley [9]. Using the state propagation equation (4) the samples
of the driving processu(n) are given by the equation:

u(n) = H1[x(n) − Fx(n− 1)] (18)

whereH1 = [0, · · · , 0, 1, 0, · · · , 0, 0]. The true state vectors
x(n) andx(n−1) are unknown, sou(n) cannot be determined,
but the approximation:

α(n) = H1[x̂(n/n) − x̂(n/n− 1)] (19)

can be used [9]. The samplesα(n) are assumed to be repre-
sentative ofu(n) and can be considered independent and identi-
cally distributed. Based on the lastN measurements the variance
σ2

α(n) is estimated [11]. The sample varianceσ̂2
α(n) is obtained

by:

σ̂2
α(n) =

1

N

N−1X
i=0

[α(n− i)]2 (20)

The analysis reduces to expandingE{[α(n)]2} in term of
σ2

u(n). We writeα(n) in term of the filtered state-error vectors:

α(n) = −H1x̃(n/n) + H1Fx̃(n− 1/n− 1) + u(n) (21)
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Since the filtered state-error vectors errors are not independent,
the correlation are avoited by writing:

α(n) + H1x̃(n/n) = H1Fx̃(n− 1/n− 1) + u(n) (22)

The variance of this equation is:

E{[α(n)+H1x̃(n/n)]2} = H1FP(n−1/n−1)FT HT
1 +σ2

u(n)
(23)

Now we develop E{[α(n) + H1x̃(n/n)]2} in term of
E{[α(n)]2} and of other computed terms in the Kalman filter:

E{[α(n) + H1x̃(n/n)]2} = E{[α(n)]2}

+ 2E{α(n)x̃T (n/n)HT
1 }

+ H1P(n/n)HT
1 (24)

Using the Kalman filter equations the filtered state-error vector
can be rewriting as:

x̃(n/n) = [I−K(n)H]x̃(n/n− 1) −K(n)v(n) (25)

and the second term in (24) is:

E{α(n)x̃T (n/n)HT
1 } = −H1P(n/n)HT

1

+ H1P(n/n− 1) ×

× [I−K(n)H]T HT
1 (26)

By combining (23)(24) and (26) the resulting expression for is
E{[α(n)]2} is:

E{[α(n)]2} = H1FP(n− 1/n− 1)FT HT
1

+ H1P(n/n)HT
1

− 2H1P(n/n− 1)[I−K(n)H]T HT
1

+ σ2
u(n) (27)

Using (20) and (27) an unbiased estimator ofσ2
u(n) is given by:

σ̂2
u(n) =

1

N

N−1X
i=0

[α(n− i)]2

− H1FP(n− 1/n− 1)FT HT
1

− H1P(n/n)HT
1

+ 2H1P(n/n− 1) ×

× [I−K(n)H]T HT
1 (28)

The samples of the driving processw(n) can be approximated
by:

β(n) = H2[x̂(n/n) − x̂(n/n− 1)] (29)

whereH2 = [0, · · · , 0, 0, 0, · · · , 0, 1]. Based on the lastN
measurements an unbiased estimator ofσ2

w(n) is obtained by:

σ̂2
w(n) =

1

N

N−1X
i=0

[β(n− i)]2

− H2FP(n− 1/n− 1)FT HT
2

− H2P(n/n)HT
2

+ 2H2P(n/n− 1) ×

× [I−K(n)H]T HT
2 (30)

3.2. Estimation of the Transition Matrix

In our approach, gettingF requires the AR parameters estima-
tion. For a such purpose we estimate the transition matrix in
two steps: first, we estimate the noise AR parameters during the
silence period and second, the speech AR parameters.
The recursively least-squares lattice (RLSL) [12] algorithm is
proposed for adaptive estimation of the noise AR parameters be-
cause it has a rate of convergence typically an order of magnitude
faster than the least mean squares (LMS) algorithm used in [2]
and it provide the best prediction in the sense of least-squarer
error of the present value of the noise. The RLSL algorithm is in
fact rewriting of the QR-decomposition-based least-squares lat-
tice algorithm (QRD-LSL), which represent the most fundamen-
tal form of an order-recursive adaptive filter. This algorithm en-
joys many of the properties of the QRD-LSL algorithm, namely,
fast convergence, modularity, and an integral set of useful para-
meters and variables for signal processing applications.
A robust recursive least-square algorithm with variable forget-
ting factor is used for adaptive estimation of the speech AR para-
meters using the firstp components of the state-vector estimator
x̂(n/n). The equation (1) can be rewritten in the form:

s(n) = xT
1 (n− 1)θ(n) + u(n) (31)

where

θ(n) =
�
ap(n) ap−1(n) · · · a1(n)

�T
(32)

and
x1(n) = [s(n− p+ 1), · · · , s(n)]T (33)

The robust recursive least square approach estimates the vector
θ̂(n) by minimising the M-estimation criterion [10]:

Jn =
1

n

nX
i=1

λn−iρ
�
ε2(i)

�
(34)

where

ψ(x) = ρ′(x) = min

�
|x|
σ2

u

,
∆

σu

�
sgn(x) (35)

is the Huber influence function and∆ is a chosen constant. The
vectorx1(n) used in (31) is unknown but can be approximated
by x̂1(n/n), the firstp components of the state-vector estimator
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x̂(n/n). In this case the robust recursive least square approach
gives the estimation equations:

ε(i) = H1x̂(i/i) − x̂T
1 (i− 1/i− 1)θ̂(i− 1) (36)

γ(i) = λ(i)

+ ψ′ [ε(i)] x̂T
1 (i− 1/i− 1)R(i− 1)x̂1(i− 1/i− 1)

(37)

g(i) =
R(i− 1)x̂1(i− 1/i− 1)

γ(i)
(38)

T(i) = R(i− 1) − g(i)x̂T
1 (i− 1/i− 1)R(i− 1)ψ′ [ε(i)]

(39)

R(i) =
T(i)

λ(i)
(40)

θ̂(i) = θ̂(i− 1) + R(i)x̂1(i− 1/i− 1)ψ [ε(i)] (41)

The forgetting factorλ(i) is a data weighting factor that is used
to weight recent data more heavily and thus to permit tracking
slowly varying signal parameters. If a nonstationary signal is
composed of stationary subsignals the estimation of the AR para-
meters can be given by using a forgetting factor varying between
λmin andλmax. The modified generalized likelihood ratio algo-
rithm [13] is used for the automatic detection of abrupt changes
in stationarity of signal. This algorithm uses three models of
the same structure and order, whose parameters are estimated on
fixed length windows of signal. These windows are [i−N+1, i],
[i + 1, i + N ] and [i − N + 1, i + N ], and move one sample
forward with each new sample. In the first step of this algorithm
is calculated the discrimination function

D(i,N) = L(i−N+1, i+N)−L(i−N+1, i)−L(i+1, i+N)
(42)

where

L(a, b) = (b− a+ 1)ln

"
1

b− a+ 1

dX
i=a

ε2(i)

#
(43)

denotes the maximum of the logarithmic likelihood function. In
the second step a strategy for choosing the variable forgetting
factor is defined by lettingλ(i) = λmax whenD = Dmin and
λ(i) = λmin whenD = Dmax, as well as by taking the linear
interpolation between these values.

4. SIMULATION RESULTS

The approach was tested using a speech signal and an additive
noise. The speech signals are sentences from the TIMIT data-
base and the noise signals are the samples from the NOISEX
database. Table 1 offers a comparison with others approaches,
by showing averaged SNR gain based on 10 speech signals and
10 noise simulations for each speech signal.
Compared to the method similar in structure previously proposed
by the author in [6] and to the Gibson’s algorithm [5], the pro-
posed method provides increases in SNR, as well as improved
speech quality and intelligibility for input SNR between -5 and
15 dB. Gibson’s algorithm needs two or three iterations to get
the highest SNR gain and lead to computational requirements
higher than those corresponding to the proposed approach.

Output SNR
Input SNR [5] [6] proposed

(dB) (dB) (dB) (dB)

-5.00 1.24 3.14 3.92
0.00 4.16 4.78 5.31
5.00 7.35 7.89 8.47

10.00 11.21 11.56 12.32
15.00 15.62 15.93 16.47

Table 1: OUTPUT SNR FOR AN INPUT SPEECHSIGNAL PLUS

COLORED NOISE
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