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ABSTRACT

In multi-channel acoustic echo cancellation a problem
of non-uniqueness occurs. Due to the high correlation
of the recorded signals the system of normal equations
is rank-deficient and there is an infinite number of so-
lutions. In this paper, we propose an unambiguous so-
lution to this problem by choosing the minimum norm
solution to the system of normal equations, thus avoid-
ing preprocessing of the recorded signals. Furthermore,
an efficient implementation of the solution is presented
using a fast eigenvalue decomposition of the autocorre-
lation matrix.

1. INTRODUCTION
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typically intended for use in high-quality teleconferenc-
ing systems. In such a teleconferencing system, acous-
tic echoes emerge as a result of acoustic coupling of a
microphone and a loudspeaker within the same room.
In order to allow for transparent and full-duplex com-
munication, an echo canceler is employed to remove all
acoustic echoes.
In case of multiple audio channels, if a single person
is speaking, then the sounds that are recorded by the
microphones are highly correlated. As a consequence
of this correlation a problem of non-uniqueness occurs
[1] [5], and straightforward generalization of the single-
channel case does not lead to the desired echo cancel-
lation in multi-channel audio systems. In literature, a
number of methods is available that deal with the non-
uniqueness problem by processing the recorded signals
before they are locally reproduced by the loudspeakers,
e.g. [1] [5]. Preprocessing is done in order to reduce the
high correlation of the signals, such that multi-channel
generalizations of single-channel acoustic echo cancel-
ers can be applied to the processed signals. Evidently,
these methods change the problem in favor of the tool,
which is not the approach chosen in this paper. Fur-
thermore, since transparent audio channels are desired
in high-quality teleconferencing systems, preprocessing
is only possible to a limited extent.
The objective of the work presented in this paper is
to provide a solution to the non-uniqueness problem

without preprocessing the signals. To that end, a new
approach to MCAEC is chosen.
The paper is organized as follows. In Section II, MCAEC
is classified as a rank-deficient system identification
problem. In Section III a solution to such a problem
is formulated. Furthermore, an efficient method is pre-
sented for computation of this solution. In Section IV
this method is conveniently fit into an existing m
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algorithm. Subsequently in Section V, simulation re-
sults of the application of these concepts to MCAEC
are shown. Finally, in Section VI conclusions are drawn.

In this paper, the following notations are used: Ma-
trices and vectors are boldfaced and underlined, respec-
tively. The l,m-th element of matrix A is denoted as
(A)lm. The superscript t denotes the transpose opera-
tor, the superscript h denotes the hermitian operator.

2. RANK-DEFICIENT SYSTEM
IDENTIFICATION

Consider a schematic diagram for s
¯
tereophonic a

¯
coustic

e
¯
cho c

¯
ancellation (SAEC) which is a special case of

MCAEC, as shown in Figure 1. SAEC is easily gener-
alized to acoustic echo cancellation with an arbitrary
number of channels, and serves as a guideline through-
out this paper. Echo cancellation for a single micro-
phone in the near-end room is discussed, a similar ap-
proach applies to the other microphones. The canceler
estimates the contribution of the loudspeaker signals to
the microphone signal by identifying the correspond-
ing echo paths, therefore MCAEC is regarded as a
straightforward m

¯
ulti-i

¯
nput, s

¯
ingle-o

¯
utput (MISO) sys-

tem identification problem.
More often than not, people within the same room are
not speaking simultaneously, and there is only a single
acoustic source in the far-end room. Therefore a causal
relationship between the input signals exist [1],

gt
2x1[k] = gt

1x2[k], (1)

where gj = (gj,N−1, . . . , gj,1, gj,0)t for j = 1, 2 are FIR
models of the acoustic impulse responses in the far-end
room and xj [k] = (xj [k − N + 1], . . . , xj [k − 1], xj [k])t

are discrete-time versions of the loudspeaker signals.
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Figure 1: Schematic diagram for SAEC.

An FIR filter ĥj [k] = (ĥj,N−1[k], . . . , ĥj,1[k], ĥj,0[k])t

is used to identify the jth acoustic echo path. Us-
ing the definitions xt[k] = (xt

1[k], xt
2[k]) and ĥt[k] =

(ĥt
1[k], ĥ2

t[k]), the following system of normal equations
is formulated,

Rx[k]ĥ[k] = rxy[k], (2)

where Rx[k] = 1
k

∑k
i=1 x[i]xt[i] is the autocorrelation

matrix of x[k] and rxy[k] = 1
k

∑k
i=1 x[i]y[i] is the cross-

correlationvector of x[k] and y[k]. If expression (1)
holds exactly then a number of equations in the system
(2) is linearly dependent. Consequently, the nullspace
of Rx[k] is non-trivial, which implies that the autocor-
relation matrix is rank-deficient, and there is no unique
solution to the system (2).

3. MINIMUM NORM SOLUTION

We propose to choose the minimum norm solution to
(2) since it is unique and well-defined. Choice for the
minimum norm solution is not arbitrary since it avoids
projection onto the nullspace of Rx[k]. The solution is
formulated using the e

¯
igenv

¯
alue d

¯
ecomposition (EVD)

of Rx[k], given by Rx[k] = Q[k]Λ[k]Qt[k]. Since Rx[k]
is rank-deficient, a number of eigenvalues are zero, i.e.

Λ[k] =
(

Λs[k] 0
0 0

)
, Q[k] =

(
Qs[k] Qn[k]

)
,

where the eigenvectors in Qs[k] and Qn[k] span the
column space and the nullspace of Rx[k] respectively.
The minimum norm solution is now given by

ĥmin[k] = R†
x[k]rxy[k] , (3)

where R†
x[k] = Qs[k]Λ−1

s [k]Qt
s[k] is referred to as the

pseudo-inverse of Rx[k].
Computation of an EVD has been a matter of consid-
erable study; also quite some effort has been spent on
obtaining fast methods for updating an EVD, e.g. [2].

However, even the most sophisticated methods have ex-
cessive computational complexity in comparison with
efficient implementations of adaptive filters as applied
to MCAEC, e.g. [4]. Due to the high computational
complexity of the EVD of Rx[k], real-time computa-
tion of the minimum norm solution (3) is not feasible.
In order to reduce complexity, we propose an alterna-
tive.
The autocorrelation matrix Rx[k] is partitioned as

Rx[k] =
(

Rx1x1
[k] Rx1x2

[k]
Rx2x1

[k] Rx2x2
[k]

)
,

where Rxaxb
[k] = 1

k

∑k
i=1 xa[i]xt

b[i] for a, b = 1, 2 is
the crosscorrelation matrix of xa[k] and xb[k]. We as-
sume that all signals are weakly stationary, therefore
each crosscorrelation matrix has Toeplitz structure. It
is well-known [3] that Toeplitz matrices are approxi-
mately diagonalized by the d

¯
iscrete F

¯
ourier t

¯
ransform

(DFT) matrix. The N × N DFT matrix F is defined
as

(F)ab = e−2π
(a−1)·(b−1)

N for 1 ≤ a, b < N

The autocorrelation matrix is approximately block di-
agonalized as follows

1
N

(I ⊗ F)h Rx[k] (I ⊗ F) ≈ Px[k], (4)

where ⊗ symbolizes the Kronecker product and, in case
of SAEC, I is the 2 × 2 identity matrix.
The power matrix Px[k] contains the diagonalized blocks,

Px[k] =
(

Px1x1 [k] Px1x2 [k]
Px2x1 [k] Px2x2 [k]

)
.

Since the power matrix is Hermitian its EVD equals
Px[k] = V[k]Γ[k]Vh[k]. It is easily shown that the
EVD of a 2N × 2N matrix with 22 diagonal blocks is
identical to the distinct EVDs of N 2×2 matrices. Con-
sequently, the computational complexity of the EVD of
Px[k] is dramatically reduced. For example, if orthog-
onal iteration is used to calculate the EVDs, then the
complexity of the EVD of Rx[k] and Px[k] equal O(N3)



and O(N), respectively.
Note that the matrices Λ[k] and Γ[k] are asymptoti-
cally equivalent, yet ordered differently. There are no
practical consequences involved in this matter; never-
theless, in order to keep consistency with previous def-
initions, it is assumed that the EVD of Px[k] is re-
ordered such that Γ[k] ≈ Λ[k]. Consequently V[k] is
partitioned as

V[k] =
(

Vs[k] Vn[k]
)
.

The pseudo-inverse of Rx[k] is approximated by

R†
x[k] ≈ 1

N
(I ⊗ F) P†

x[k] (I ⊗ F)h ,

where P†
x[k] = Vs[k]Λ−1

s [k]Vh
s [k] is the pseudo-inverse

of Px[k]. Note that Λs[k] is a diagonal matrix and is
inverted efficiently. In addition, since V[k] and Px[k]
are isomorphic the complete computation of P†

x[k] re-
quires O(N) multiplications.
The approximated minimum norm solution (3) equals

ĥmin[k] ≈ 1
N

(I ⊗ F) P†
x[k] (I ⊗ F)h rxy[k] . (5)

4. APPLICATION TO MCFDAF

The concept of the previous section is conveniently fit
into existing MCFDAF algorithms - for more details
on efficient MCFDAF algorithms see e.g. [4]. As an
example, in this section a variant of the r

¯
ecursive l

¯
east-

s
¯
quares (RLS) algorithm is applied to SAEC, given by

Rx[k] = αRx[k − 1] +
x[k]xt[k]

2N

r[k] = y[k] − xt[k]ĥ[k]

ĥ[k + 1] = ĥ[k] + βR†
x[k]x[k]r[k]

where α is an exponential forgetting factor and β is the
stepsize. The first line shows the update of an approx-
imation of the autocorrelation matrix. The second line
shows the filter part of the algorithm - which is not of
interest in this paper. The last line shows the update of
the model filter coefficients. Subsequently, the matrix
(I ⊗ F) is introduced into the algorithm, resulting in

Px[k] = αPx[k − 1] +
X[k]X∗[k]

2N

ĥ[k + 1] ≈ ĥ[k] + β(I ⊗ F)P†
x[k]X∗[k]r[k]

where X[k] = (I⊗F)x[k] is the frequency domain data
vector and Px[k] is an approximation of the power ma-
trix. Since Px[k] has diagonal blocks, it is updated effi-
ciently [4]. Moreover, the EVD is computed efficiently
by calculating the separate EVDs of N different 2 × 2
matrices. To that end, for each frequency bin p the
matrix Θp[k] is constructed

Θp[k] =
(

(Px1x1 [k])pp (Px1x2 [k])pp

(Px2x1 [k])pp (Px2x2 [k])pp

)
,

where (Pxixj
[k])pp is the p-th element on the diag-

onal of the i, j-th block of the power matrix Px[k],
i.e. the power in the p-th frequency bin of the cross-
power matrix of xi[k] and xj [k]. Subsequently, the
EVD Θp[k] = Vp[k]Λp[k]Vh

p [k] is calculated. The ma-
trix Λp[k] contains 2 eigenvalues of the power-matrix
Px[k]. By executing this process for each frequency bin
p = 0, 1, . . . , N − 1, all 2N eigenvalues and eigenvectors
of the power-matrix are obtained. Subsequently, the
non-zero eigenvalues from Λ[k] are selected and placed
on the diagonal of the matrix Λs[k]. The correspond-
ing eigenvectors are stacked side by side in the matrix
Vs[k]. Finally the pseudo-inverse of the power matrix
is calculated using the EVD of Px[k].

5. SIMULATIONS

Simulations were done with a block-version of the algo-
rithm presented in the previous section that has been
implemented in Matlab [4]. The source signal s[k] in
the far-end room is zero-mean white noise. The source
signal is filtered by two synthesized far-end room im-
pulse responses g

1
and g

2
each of length 1024, result-

ing in two near-end loudspeaker signals x1[k] and x2[k].
White measurement noise is added to the loudspeaker
signals, such that the s

¯
ignal to n

¯
oise r

¯
atio (SNR) equals

30 dB. Subsequently, the loudspeaker signals are fil-
tered by two synthesized near-end room impulse re-
sponses h1 and h2 each of length 1024, and added, re-
sulting in a near-end microphone signal y[k]. White
measurement noise is added to the microphone signal,
such that SNR = 30 dB. In the simulations we will
compare our approach with the conventional MCFDAF
algorithm. In either case the FIR model filters ĥ1 and
ĥ2 each have N = 1024 tabs. The forgetting factor in
the power estimation is α = 0.9 and the stepsize in the
update is β = 0.001.
With regard to this simulation setup it should be noted
that the zero eigenvalues of the autocorrelation matrix
are not actually zero but very small. On one hand this
discrepancy is caused by perturbations in relationship
(1) that arise as a result of the finite filter length of the
model filters. On the other hand the discrepancy is due
to the measurement noise that has been added to the
signals. In order to distinguish between ’zero’ and non-
zero eigenvalues we introduce a predefined SNR. Using
this predefined SNR we can define the minimum sig-
nal power with respect to the overall maximum signal
power. Eigenvalues that do not exceed the minimum
signal power are now defined as being zero. In the sim-
ulations the predefined SNR is set to 30 dB.
In the first part of the simulations we show the con-
sistency of our approach. Figure 2 shows the m

¯
ean

s
¯
quared e

¯
rror (MSE) of the conventional algorithm and

the MSE of the proposed algorithm. In order to smooth
the curves, the signals are averaged over 512 samples.
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Figure 2: Mean squared error.
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Figure 3: Misalignment from solution.

Evidently, the echo cancellation properties of both al-
gorithms are similar. Subsequently, for both algorithms
the misalignment from the desired solution is computed,
which is defined as ‖h− ĥ[k]‖/‖h‖ for the conventional
and as ‖hmin − ĥ[k]‖/‖hmin‖ for the proposed algo-
rithm; where h = (ht

1, h
t
2)

t is the true solution and hmin

is obtained by means of expression (3) using all avail-
able data. Figure 3 shows the misalignment of both
algorithms; it is concluded that the new algorithm con-
verges to the minimum norm solution, while the con-
ventional algorithm does not converge to the true solu-
tion. Thus the new algorithm is consistent, while the
conventional algorithm is not. In order to show that
the conventional algorithm does not converge to the
minimum norm solution either a third curve is plotted
in Figure 3 representing the misalignment of the con-
ventional solution from the minimum norm solution.
In the second part of the simulations we show that the
proposed algorithm converges to an unambiguous solu-
tion, while the conventional algorithm converges to an
arbitrary solution. In this experiment the previous sim-
ulation is repeated without measurement noise added
to the signals. Thus the identification problem itself re-
mains unaltered, just the conditions have changed. We
use the misalignment to compare the solutions from
the two simulations. In Figure 4 the misalignment
‖ĥB [k]−ĥA‖/‖ĥA‖ is plotted for both algorithms. Here

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

M
isa

lig
nm

en
t(

dB
)

sample

Prop.sol. from noisy prop.sol.
Conv.sol from noisy conv.sol.

Figure 4: Misalignment from previous solution.

ĥA refers to the final solution that is obtained in the
first simulation and ĥB [k] refers to the second simula-
tion, the noiseless case. It is concluded that the pro-
posed algorithm converges to a well-defined solution,
while the conventional algorithm does not.

6. CONCLUSIONS

In this paper we have proposed a new solution to the
non-uniqueness problem that occurs in MCAEC, by
choosing the minimum norm solution to the system of
normal equations. This approach provides an unam-
biguous solution, yet does not rely upon preprocess-
ing. Furthermore, our method is conveniently applied
to existing MCFDAF algorithm with small additional
computational load. Since the minimum norm solution
is well-defined, it is expected that tracking properties
and robustness of MCFDAF algorithms will improve.
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