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ABSTRACT

In the past years, statistical physics has created meth-
ods to derive algorithms which are optimal, i.e. these
algorithms maximize the convergence speed. Most im-
portantly, these algorithms can be calculated starting
from first principles. This paper shows how to derive
such optimal algorithms for acoustic echo cancellation
using statistical physics. The results are compared to
standard algorithms of the field.

1. INTRODUCTION

Statistical physics deals with systems of many interact-
ing degrees of freedom. Traditionally, it investigates
many-particle systems such as gases or solids. The
methods developed have been successfully expanded to
other “many-particle” systems such as neural networks,
traffic or markets during the past decade. Some of these
methods have been designed for the on-line estimation
of parameters and, hence, can directly be applied to
acoustic echo control (AEC).

The most distinct feature of the statistical physics
approach is that algorithms can be calculated from first
principles. This is done by varying the update rule with
respect to the algorithm. By construction the result-
ing algorithms are optimal in the typical case. More-
over, these algorithms show desirable features, e.g. au-
tomatic stepsize control, without having to put them
in explicitly.

2. GENERAL ALGORITHM

In this work I will restrict to the class of algorithms
where the change of the ith filter coefficient is propor-
tional to the ith component of the signal vector. A
purely sequential update rule for the filter coefficients
¢(n) at time sample n can then be written in general
form as

¢(n+1) =¢(n) + Fce(n),z(n),y(n)) z(n) (1)

where z(n) is the vector that comprises the N latest far-
end signal samples and y(n) is the local signal at time n.
The local signal is given by y(n) = g"z(n)+&(n), with

g being the room impulse response and £ any additional
noise or double talk. In this paper I will assume, that
[lgl| is known or reliably estimated from the data y(n).
Without loss of generality ||g|| can then chosen to be
unity. B

Further assuming that there is no a priori knowl-
edge about the structure of g, the weight function F' in
(1) can only depend on the scalar products of ¢ and z
due to symmetry. Consequently, (1) can be written as

ent1)=eln) + < F (hercp)aln), ()

where h. = c'z/c and ¢ = ||¢|| = \/cc at time sam-
ple n. Note that ||z||> = O(N). The algorithm used
for updating the filter coefficients is then completely
characterized by the particular realization of the weight
function f in (2).

3. VARIATIONAL APPROACH

The statistical physics approach has two main ingre-
dients [1, 2]: the treatment of the update rule in the
so-called thermodynamic limit N — oo and the deter-
mination of the optimal algorithm by a variation with
respect to f in (2). An alternative, but equivalent ap-
proach based on Bayesian statistics is outlined in [5].

For deriving optimal algorithms it turns out that
instead of using e = y — ' the overlap p = g '¢/c is a
more convenient error measure. Clearly, as ¢ — g one
will have p — 1. -

Multiplying (2) with g and ¢, respectively, one ob-
tains after normalization:

s 1) = plo)+ (£, = ptn) - 2512

cn+1) = c(n)+%(2fhc+f2). (3)

Here and in the following the arguments of f are omit-
ted for simplicity.

Taking the thermodynamic limit, i.e. for large NV,
the stochastic difference equations (3) can be written
as a set of differential equations for p and c:
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where 7 = n/N defines the relevant time scale and
the average (-) is over the joint distribution of y, he,
and hy = g'z. It needs to be stressed that p and
¢ do not fluctuate for N — oo, since they are self-
averaging in this limit, ¢.e. their distribution becomes
sharply peaked (basically p and ¢ take the role of mean
and variance of ¢, respectively).

The set of differential equations (4,5) can be solved
numerically for any given algorithm f. Thus, one ob-
tains the convergence properties in the typical case.
Moreover, the asymptotic behavior for 7 — oo can of-
ten be obtained analytically.

Eq. (4) determines the time evolution of the overlap
p, which is a measure of the performance of the algo-
rithm f. Clearly, the optimal algorithm f,,; is charac-
terized by the fastest change dp/dr of the performance
p towards 1. Thus, fop+ can be determined by varying
dp/dr w.r.t. the weight function f
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resulting in the optimal algorithm

1
Jopt = 2 o) pin ) ~ he (7)

with an average over h, conditional on the (accessible)
quantities h¢, y. By construction f,p;: is that algorithm
that converges as fast as possible.

One might object that (7) is not a realistic algo-
rithm as it explicitly depends on the performance p,
i.e. the actual error, which is not accessible, in general.
However, inserting (7) into the differential equations
(4,5) one obtains

dp P g2
ar §<0pt>P<hC,hg,y> (8)
dc C /9
ar §<0pt>P<hc,hg,y> (9)

showing that p(7) = ¢(7) holds as a general property
of fopt if one starts with filter coefficients set to zero
in the beginning. Hence, the performance measure al-
ways equals the length of the signal vector and both
converge to 1 from below. Consequently, p can always
be replaced by ¢ in (7).

Despite its simple functional form, eq. (7) can be
tricky to evaluate for real signals. Nevertheless, it shows
which information is essential, namely the conditional
distribution of h, = ¢g'x. Thus, any knowledge about
the structure of the room impulse g and the distribu-
tion of far-end signals z strongly influences the per-
formance of the optimal filter algorithm (7). Any re-
duction in the uncertainty of the model about these
quantities will pay back via an improvement of the al-
gorithm. Thus, the algorithm (7) is optimal given the
knowledge one has about the distribution of hg.
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Figure 1: Comparison of the performance of the algo-
rithms (11) (thick line) and (10) (thin line) for white
noise as a far-end signal. Algorithm (10) does not con-
verge due to the presence of a local distortion with sig-
nal to noise ratio of 6.5dB. Here and in the following
figures the sampling rate has been chosen to be 10kHz.

A note is in place here regarding the underlying
assumption that there is no a priori knowledge about
the structure of room impulse response g. Relaxing this
assumption does not have any impact on the feasibility
of the method described in this section. If one actually
has knowledge about g in a parameterized form, the
variational approach can still be applied.

4. EXAMPLES

It is interesting to see that for simple models of the
far-end signal and the local distortion f,,: reduces to
algorithms which are very similar to those being dis-
cussed in the literature of AEC.

4.1. Distortion free case

Modeling the far-end signal as white noise and assum-
ing no local distortion being present, one obtains after
carrying out the average in (7):

L e
e

This basically is the well-known NLMS algorithm, lead-
ing to 1 — p = exp(—7), i.e. exponentially fast conver-
gence, asymptotically [3].

4.2. Distortion modeled as Gaussian noise

Modeling far-end signal and local distortion as mutu-
ally uncorrelated noise results in the optimal algorithm

fopt:a(%_hc)a «
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Figure 2: Performance of the algorithm (11) for a vary-
ing impulse response which changes abruptly at 1.0s
and 1.5s. Depicted are results for white noise (thin
line) and speech (thick line). Note that for the latter
case (11) is strictly speaking not the optimal algorithm
as (11) was computed with white noise as a far-end
signal.

where 02 denotes the variance of the local distortion.
FOI‘/T — oo this algorithm convergences like 1 — p
T1/2,

As can be seen the necessary stepsize a comes in
automatically in (11), exclusively determined by the
current performance of the filter and the data. As em-
phasized in Section 3, the explicit dependence of the
stepsize « on the (inaccessible) performance p can be
removed by replacing p by ¢, since p = ¢ for the optimal
algorithm. Most remarkably, however, is the explicit
deviation of the error term (y/p — h.) of the algorithm
(11) from the LMS form (y — h.) for p # 1. This clearly
indicates that LMS error term is only asymptotically
optimal, i.e. for p ~ 1.

Fig. 1 shows the performance of this algorithm com-
pared with that of algorithm (10).

4.3. Varying impulse response

In a real environment the room impulse response is
not constant over time. Fig. 2 shows an extreme case
where the impulse response changes abruptly several
times. As can be seen algorithm (11) perfectly copes
with the situation although no ad hoc stepsize control
has been build in.

The algorithm automatically detects the change of
g via its dependence of the stepsize on p in (11). While
p ~ 1 just before the change of g, the overlap p x g ' ¢
becomes 0 just after an abrupt change of the impulse
response since then g | ¢ with high probability.

4.4. Correlated far-end signal

Modeling the far-end signal as white noise surely is a
crude simplification. In principle one can easily relax

this simplification by computing the optimal algorithm
according to (7). However, one would need to have a
fair idea about the functional form of the distribution
of the far-end signals z(n) in order to carry out the
average over P(hgy|he,y). In other words if one knew
the distribution of the far-end signal one could readily
compute the truly optimal algorithm via (7).

This shows the real problem of construction algo-
rithms for AEC: Each member of the family of opti-
mal algorithms (7) is characterized by the distribution
P(hglhe,y). Hence, the less one’s uncertainty about
this distribution the better the corresponding algorithm,
as already pointed out in Section 3. In addition, one
needs to be able to actually carry out the average over
P(hglhe,y) in (7). The latter will not be possible in
general, at least not in an analytical way. Hence, what
one eventually needs to do is to find reasonable approx-
imations to the averages in the differential equations
(4,5) and the resulting optimal algorithm (7).

How the required averages in (4,5) can be approxi-
mated for correlated far-end signals has been shown in
[4] for a simple (non-optimal) choice of f . However,
the application of this to the optimal algorithm (7) is
still a topic for future research.

Here, I will take a simplified approach, assuming
that the correlation of the far-end signal is given by a
first-order Markov process with time-varying correla-
tion C'(n):

{z(n+1z(n)) = Cln+1). (12)

C(n) is estimated at each time step and the update
of the filter coefficients is performed via (2) with the
replacements

z(n)

y(n) — yn) -

where C is the estimate of C. Essentially this corre-
sponds to pre-whitening the far-end signal.

Fig. 3 compares the performance of algorithm (11)
with and without this pre-whitening procedure applied
to real speech signals. As has been discussed above,
none of these two algorithms is the true optimal one
according to eq. (7). Algorithm (11) combined with the
pre-whitening procedure outlined above can be viewed
as an lower bound on the performance p of the truly
optimal algorithm for this setting.

5. COMPLEXITY VS. PERFORMANCE

This paper restricts to updates of the form (1) where
the update only depends on the most recent far-end
signal. An alternative would be to replace (1) by an
update of the form

e(n+1) = E(e(n), {z(i), y(i) yimn—m...n) ~ (15)
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Figure 3: Performance of the algorithm (11) (thin
line) and algorithm (11) with additional pre-whitening
(thick line). The far-end signal is speech plus local dis-
tortion (signal to noise ratio 6.5dB).

depending on the m latest far-end signals. One might
hope that such an algorithm leads to faster convergence
of the filter coefficients.

Clearly, the algorithm (15) has a higher computa-
tional complexity than (1) since it requires the storage
and handling of considerably more quantities. Does
this higher complexity also cause a better performance
(faster convergence)? Opper [5] has recently shown for
some neural network applications that the convergence
of the optimal algorithm for updates of type (15) is at
most faster by a factor of 2 as compared to the op-
timal algorithm of type (1). While it is currently not
clear whether the results of [5] hold for the general case
they give some confidence that using the latest far-end
signal only is a reasonable simplification of the more
general algorithm (15).

6. CONCLUSIONS

The computational methods developed within statis-
tical physics can be used to derive the optimal algo-
rithm for AEC from first principles. Not too surpris-
ingly many features of such optimal algorithms are es-
sentially contained in established algorithms for AEC.
However, the computational methods outlined in this
paper provide a clear route to improve existing algo-
rithms by showing the essential dependencies of the
optimal algorithm.
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