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ABSTRACT
This paper presents an approach for a Kalman filter
in subbands to enhance noise-corrupted speech signals.
We focus especially on the estimation of the necessary
speech models. The resulting algorithm has less than
39 ms delay and thus fulfills the ETSI requirements for
mobile telephony.

1. INTRODUCTION

In recent years, speech processing systems for cars,
such as hands-free telephones or voice controlled oper-
ations, have become increasingly popular. They all re-
quire noise reduction, increasing both the communica-
tion comfort and the recognition rate of voice controlled
systems. Especially for hands-free car phones, cus-
tomers’ quality demands are steadily increasing, while
developers still are required to limit the delay of the
algorithms to 39 ms. In this contribution, a noise re-
duction algorithm based on Kalman filtering is pro-
posed that requires parametric spectral estimation of
both speech and noise signals. These parametric mod-
els are able to resolve precisely the pitch components of
speech signals. Since pitch components are necessary
to preserve the natural sound of speech [1], the Kalman
filter offers a high potential for good noise reduction.
Additionally, we will show that, with this algorithm,
it is possible to fulfill the ETSI delay requirements for
mobile telephony.

In order to avoid high model orders – necessary to
model the pitch components – the Kalman filtering is
performed in subbands.

In the following, we propose a Kalman filter for
noise reduction in subbands. We focus especially on the
necessary estimation of the speech and noise models.
Additional enhancement can be obtained by adjusting
and enhancing the AR models of the lower frequency
bands, which usually exhibits the lowest SNR (signal
to noise ratio), to the estimated pitch frequency.

2. KALMAN FILTERS FOR COLOURED
NOISE

The disturbed speech signal x(k) can be considered as
the sum of the pure speech and the car noise: x(k) =
s(k) + n(k). These superimposing signals can be mod-
elled as AR processes, with white noise processes w(k)
and η(k), respectively

s(k) =
p∑

i=1

ai(k) s(k − i) + w(k) (1)

n(k) =
q∑

i=1

bi(k)n(k − i) + η(k) (2)

where p and q, indicate the model orders [2].
With s(k) = [s(k − p + 1), . . . , s(k)]T and n(k) =

[n(k − q + 1), . . . , n(k)]T these equations can also be
written in the state-space domain,

s(k) = As(k − 1) s(k − 1) + gs w(k) (3)
s(k) = hT

s s(k) (4)
n(k) = An(k − 1)n(k − 1) + gn η(k) (5)
n(k) = hT

n n(k) (6)

with

As(k)=




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

ap(k) ap−1(k) · · · a1(k)




p×p

,gs=hs=




0
...
0
1




p×1

.(7)

For An(k), gn and hn the variables a and p have to be
replaced by b and q.

The common notation in the state-space domain is
given by:

x(k) = Ax(k − 1)x(k − 1) + Gv(k) (8)
x(k) = hT

x x(k) (9)

with:
x(k)=

[
s(k)
n(k)

]
v(k)=

[
w(k)
η(k)

]
G=

[
gs 0
0 gn

]

Ax(k)=
[

As(k) 0
0 An(k)

]
hx =

[
hs

hn

]
(10)

The Kalman equations for the given model can be
denoted as:

x̂(k) = Ax(k − 1) x̂(k − 1) +
K(k)[x(k) − hT

x Ax(k − 1) x̂(k − 1)](11)
K(k) = P(k|k − 1)hx [hT

x P(k|k − 1)hx]−1 (12)
P(k|k − 1) = Ax(k − 1)P(k − 1)AT

x (k − 1) +
GV(k)GT (13)

P(k) = [I − K(k)hT
x ]P(k|k − 1) (14)



where x̂(k) is the estimate of x(k), K(k) the Kalman
gain, P(k|k−1) = E{[x(k)−Ax(k−1) x̂(k−1)] [x(k)−
Ax(k − 1) x̂(k − 1)]T } the prediction-error covariance
matrix, and P(k) = E{[x(k) − x̂(k)] [x(k) − x̂(k)]T }
the filtering-error covariance matrix. The covariance
matrix of v(k) is defined as V(k) = diag(σ2

w(k), σ2
η(k)).

Thus, the estimate of the undisturbed speech signal
can be obtained by ŝ(k) = [hT

s 0] x̂(k).
When determining the AR model of a speech signal,

one can observe that model orders ord ≥ fsample/fpitch

are necessary to resolve the pitch components. At a
sampling frequency of fsample = 8 kHz, this results
in model orders larger than 80 for pitch frequencies
fpitch < 100 Hz.

0 500 1000 1500 2000 2500 3000 3500 4000
−20

0

20

40

[d
B

]

0 500 1000 1500 2000 2500 3000 3500 4000
−20

0

20

40

[d
B

]

0 500 1000 1500 2000 2500 3000 3500 4000
−20

0

20

40

[d
B

]

Frequency [Hz]

Power spectral density 

Model order = 30 

Model order = 60 

Figure 1: Comparison of the reference PSD (upper)
with AR-models of different order (middle and lower)
for a voiced signal block with fpitch = 140 Hz.

Fig. 1 compares the power spectral density (PSD)
of a voiced signal block (upper graph) with AR-speech
models of order ord = 0.5∗fsample/fpitch (middle graph)
and ord = fsample/fpitch (lower graph). It demon-
strates the necessity of a high model order.

On the one hand, these high orders cause problems
for the estimation of the speech models. On the other
hand, the Kalman equations become very large, result-
ing in a high computional demand. Therefore, we first
decompose the speech signal in subbands. These sub-
band signals are then filtered separately with Kalman
filters of lower order. For the frequency decomposition,
we chose a 16 channel filterbank.

3. MODEL ESTIMATION

The methods for the estimation of the speech and noise
models have to cope with the fact that speech and noise
cannot be measured separately. Noise is superimposed
on speech and the noise model can only be estimated
during speech pauses.

To estimate the models, the input signal is decom-
posed in blocks of N = 32 samples, which is equivalent
to 48 ms when using a subsampling rate of 12 for the
filterbank. After every K = 5 samples, the models
are updated. The best results are obtained when the
current filtered input sample lies in the middle of the
signal block used for the model estimation. This results

in a signal delay of N/2 samples (=̂24 ms). Additional
delay is provided by the filterbank. Our 16-channel fil-
terbank utilises a prototype lowpass filter with length
64, corresponding to a signal delay of 8 ms. In total,
the algorithm produces a delay of 32 ms.

3.1. Speech models
For the speech signal, model orders of about 5-7 should
be chosen for the lower frequency bands, in order to ob-
tain sufficient resolution of the pitch components. For
the higher frequency bands, the model order can be re-
duced to two. We compared different methods for AR
modeling [2, 3]. In particular, we investigated the EM
algorithm of [4]. This algorithm describes a recursive
iteration for every signal block. The iteration utilizes
the Kalman estimates for an enhanced model estima-
tion and vice versa. At the beginning, a good initial
model estimate is necessary to allow a first application
of the Kalman equations. At the end of every iteration,
the Kalman filter yields estimates of the error covari-
ance matrix P(k) and the state x̂(k). These are used
to build the correlation matrix

Q(k) =
k+N/2∑

k0=k−N/2+1

P(k0) + x̂(k0)x̂T (k0). (15)

This matrix contains estimates of the autocorrela-
tion matrices of the signals s(k) and n(k) which can
be utilized for enhanced estimates of the signal models.
Performing 10-15 iterations, the algorithm usually con-
verges towards better model estimates. In particular,
the speech models exhibit higher maxima at multiples
of the pitch frequency. Nevertheless, the algorithm also
tends to amplify small model maxima of voiceless sec-
tions and speech pauses. This yields stronger musical
tones. Therefore, we decided to apply a non-recursive
estimation method and enhance the speech models ex-
plicitly during voiced sections based on the estimated
pitch frequency (see Section 4).

Burg’s method [5], which minimizes the sum of the
powers of the forward (e+

i (k)) and backward (e−i (k))
prediction error, proved to be the most powerful of
these direct estimation methods. We used noisy speech
as input signal. As long as the pitch components ex-
hibit larger power than the car noise, the results are
satisfactory (see also Section 4). The Burg algorithm
estimates the Parcor coefficients Γi(k); i = 1 . . . p

i = 0 : e+
0 (k0) = e−0 (k0) = x(k0);
k0 ∈ [k − N/2 + 1 . . . k + N/2] (16)

i = 1 . . . p :

Γi(k) =

2
k+ N

2∑
k0=k− N

2 +i

e+
i−1(k0)[e−i−1(k0 − 1)]∗

k+ N
2∑

k0=k−N
2 +i

{|e+
i−1(k0)|2 + |e−i−1(k0 − 1)|2}

(17)

e+
i (k0) = e+

i−1(k0) − Γi(k) e−i−1(k0 − 1) (18)

e−i (k0) = e−i−1(k0 − 1) − Γ∗
i (k) e+

i−1(k0) (19)

which can be converted into the AR parameters (ai(k))
with the Levinson-Durbin recursion. The time index



k lies in the middle of the signal block for which the
models are estimated.

Besides the AR parameters, the variance σ2
w(k) has

to be estimated. The estimate determined by the Burg
algorithm described above is distorted by the noise and
cannot be utilized. Our approach is the following:

σ2
w(k)=E{|s(k) −

∑p

i=1
a∗

i (k) s(k − i)|2}
= sss,k(0) − 2 Re{

∑p

i=1
a∗

i (k)sss,k(i)}
+
∑p

i=1

∑p

j=1
a∗

i (k)aj(k) sss,k(i − j)(20)

utilizing the estimated AR parameters ai(k) and
the autocorrelation values sss,k(i); i = 0, . . . , p which
are calculated as follows:

sss,k(i) = IDFT {SPSD(j, k)} (21)
SPSD(j, k) = max{XPSD(j, k) − NPSD(j, k), 0} (22)
XPSD(j, k) = |X(j, k)|2 (23)

NPSD(j, k) =




β NPSD(j, k − 1)
+(1 − β)|X(j, k)|2

speech
pause

NPSD(j, k − 1) else
(24)

The autocorrelation values sss,k(i) are based on the
difference of the speech and noise PSDs (smoothed with
β = 0.93). The spectral components X(j, k) are the
values of the Short Time Fourier transform of the noisy
subband signal x(k). The index j indicates the fre-
quency. To ensure that the PSD of the resulting ACF
is greater than zero for any frequency bin, we do not
determine the difference of the ACF in the time do-
main. Instead, we calculate the difference in the fre-
quency domain using the PSDs and limit the result to
zero before transforming it back into the time domain.
Simulations proved the remarkable advantage of this
method. In the above equations, we did not mark the
different subband signals explicitly. Of course, the cal-
culations are performed for every subband.

We also tried to calculate the AR parameters ai(k)
with the Yule-Walker equations based on sss,k(i), in-
stead of using the Burg algorithm. This method gave
worse results because the models varied more inten-
sively in time, which provoked musical tones.

3.2. Noise models
Since car noise spectra do not exhibit large maxima,
model orders of 2 are sufficient for every subband. For
the model estimation we used the smoothed NPSD(j, k)
of Eqn. 24. Three autocorrelation coefficients, snn,k(i),
i = 0, . . . , 2 determined by inverse Fourier-Transform
are sufficient to calculate the two coefficients b1(k) and
b2(k) of the noise model. Stability problems seldom
occur and can be checked with the Levinson-Durbin
recursion. The variance σ2

η(k) can then be calculated
with Eqn. 20 where s, a and p should be replaced by
n, b and q.

3.3. Overestimation and Residual Noise
Due to the variance of the noise power, which cannot be
modelled with the estimate according to Eqn. 24, the
noise reduction algorithm based on Kalman filters also

generates slight musical tones. They are less powerful
and annoying compared to the Wiener solution and can
be eliminated by a slight overestimation of NPSD(j, k)
in Eqn.22 and σ2

η(k).
It is also appropriate to let some residual noise pass

to preserve the natural sound of the speech. This can
be obtained by adding a fraction (3-8 %) of the dis-
turbed input signal to the output of every subband
Kalman filter.

4. ENHANCEMENT OF SPEECH MODEL
ESTIMATION

We already mentioned in Sec. 3.1 that it is possible to
enhance the quality of the noise reduction algorithm
specifically by amplifying or generating the maxima of
the speech models at multiples of the pitch frequency.
In the following, we propose a method that realizes this
idea.

For the lowest subband, it is difficult to resolve the
pitch components. Instead, model maxima (poles of
the AR polynomial) occur below the pitch frequency
(see Fig. 2 left, grey line), due to the large noise com-
ponents. For the higher frequency bands, this problem
is less important. Usually, the models represent the
pitch structure quite well, however, with smaller maxi-
mum values compared to the models of the clear speech
signal.

First, we propose a method to enhance the speech
model for the lowest subband with the following three-
step procedure:

1. Detect the pitch frequency based on the second
subband (250 - 750 Hz), (s. Fig. 2, right).

2. Suppress maxima of the speech model far below
the pitch frequency.

3. Place poles of the AR model at multiples of the
pitch frequency.
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Figure 2: Speech signal models. The estimated model
(grey) of the first subband is modified (black).

Fig. 2, right side, depicts the location of the poles
of the initial estimation (o) and after the modifica-
tion with estimated pitch frequency (*). According to
step 2, the amplitude of the poles at frequencies below
the pitch frequency is reduced, in order to attenuate
the low-frequency noise components. The other poles
are moved towards multiples of the pitch frequency.

The resulting model is depicted in Fig. 2, black
graph on the left. The estimated model is clearly a
close approximate to the true model (dashed graph).



For comparison, the model of the initial estimation is
given by the grey graph.

While step 2 is performed permanently, based on
the last available pitch estimate, the third step is only
executed when the pitch frequency can be estimated.

The greatest quality improvement is obtained by
the modifications of the model described for the lowest
subband. Further enhancements are possible by am-
plifying the model maxima at multiples for the pitch
frequency for the subbands 2-4. This can be performed
by moving the poles, corresponding to the estimated
pitch frequency, closer to the unit circle. Fig. 3 de-
picts the result for an example of the second subband.
However, the model maxima should only be amplified
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Figure 3: Speech signal models. The estimated model
(solid) of the second subband is modified (dashed).

but not changed in frequency because the pitch com-
ponents are no longer located exactly at multiples of
the pitch frequency at higher frequencies.

The pitch frequency, necessary for the improved
model estimation, is estimated from the second sub-
band (250-750 Hz). This is a good choice because on
the one hand, the pitch components are quite strong
in this frequency band compared to the higher bands,
and on the other hand, in the case of car noise, the
SNR is much higher in this frequency band, compared
to the lowest one. A frequency band of 500 Hz (even
666 Hz if one considers the overlapping regions to the
neighbouring bands at a subsampling rate of 12) usu-
ally contains two to four pitch components, and this
is sufficient to estimate the pitch frequency. The algo-
rithm first determines the poles which are the closest
to the unit circle. A pitch component is then detected
if other poles are located close to the unit circle at dou-
ble, half, etc., of the frequency of the closest pole. The
pitch frequency is then estimated by averaging over the
relevant poles. Based on these steps, we have designed
a reliable algorithm for pitch estimation that considers
past decisions and eliminates unlikely decisions.

5. COMPUTATIONAL LOAD

Due to the matrix multiplications, the Kalman filter
seems to involve an enormous computational load. How-
ever, as the matrices and vectors have few non-zero ele-
ments, only 4(p+q)+8 multiplications per subband are
necessary. Additional effort is required for the estima-
tion of the signal models. Here, the Burg algorithm and
the FFTs and IFFTs that are necessary to determine
σ2

w(k) make the largest contribution. As the models
only have to be estimated for signal blocks every K

samples, the order of the computational load remains
comparable to the classical Wiener solution. The meth-
ods described to enhance the estimates of the speech
model require additional computational power, espe-
cially due to the calculation of the poles of the models
and the pitch estimation. The effort strongly depends
on the platform of implementation. Nevertheless, it is
also limited to reasonable orders, because the model en-
hancement is performed at a subsampled rate for only
a few subbands.

6. RESULTS AND CONCLUSIONS

In this paper, we presented a noise reduction algorithm
based on Kalman filtering. To limit the model orders
to reasonable values, the input signal is first decom-
posed in 16 subbands. We focused especially on the
estimation of the speech model parameters. The best
results were obtained for the speech model estimated
with the Burg algorithm. To enhance the estimates,
we moved the poles of the the lowest subband towards
multiples of the pitch frequency. The determinations
of the necessary pitch estimates are based on the sec-
ond subband. Additionally, the pitch maxima of the
higher subbands may also be amplified. With its 32
ms delay, the algorithm fulfills the ETSI requirements
for mobile telephones. One result obtained for a highly
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Figure 4: Disturbed speech signal (left) and enhanced
signal (right)

corrupted speech signal is depicted in Fig. 4. Two prop-
erties of the output signal should be emphasized: The
uniform residual noise without musical tones and the
strong pitch components for the low frequencies gener-
ate a speech signal which sounds natural.
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