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ABSTRACT
Subband adaptive filters suffer degraded performance when

high input energy occursat the frequencies of subband bound-

aries. Thisis seen as increased error in critically sampled
systems and as reduced asymptotic convergence speed in
oversampled systems. An efficient dynamic frequency de-
composition scheme has previoudly been shown by the au-
thors to be effective in reducing these errors. This paper
presents an analytical framework for the evaluation of these
non-uniform dynamic subband systems. Simulation results
show reductionsin MSE of around 5-10dBs for the critical
case in addition to increased robustness to coloured inputs.

1. INTRODUCTION

Subband adaptive filters (SAF) are used in system identifi-
cation applications such as acoustic echo cancellation where
the unknown system can be of the order of several thousand
taps. They have the main benefits of reduced complexity
and possible increased convergence speed due to reduction
of eigenvalue spread in the subband signals [1]. Errorsin
both critically and oversampled SAFs can be shown to be
related to signa components around subband boundaries,
which manifest themselves in the case of critical sampling
as dominating peaksin thefinal error signal around the sub-
band boundaries [2]. In the case of oversampling, slow
asymptotic convergenceis observed [3].

This paper examines the use of non-uniform dynamic
frequency-subband decomposition (NDS) to substantially
reduce these errors. The agorithm chooses the decompo-
sition so as to avoid high-energy signal components around
subband boundaries, whilst retaining high decimation fac-
tors when possible so as to keep complexity low.

Previous work [4] is extended in this paper by the in-
troduction of an analytical framework appropriate for the
study of such non-uniform SAFs. The anaysisis primarily
focussed on critically sampled schemes, athough the frame-
work aso appliesto the oversampled case.

2. PROPOSED SCHEME

2.1. Filterbank structure

Inthis section we present an overview of the proposed scheme,

which is more fully described in [4]. A non-uniform fil-
terbank (NUFB) is obtained by merging the subbands of a
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Fig. 1. Genera dynamic filterbank structure

K-channel uniform filterbank (UFB) and then decimating
each of the resulting K (< K) subbands by an integer fac-
tor My, [5]. Thisstructure ismodified to provide an efficient
method of NDS. The structure has the general form of Fig-
ure 1, where z(n) is the fullband input signal, E.(z) are
polyphase components of a prototype lowpass filter P(z),
M is a modulation matrix, S,, is a time-varying summa-
tion matrix consisting of ones and zeros, and z(n) is the
k™ subband signa/l.\ The first stage of decimation is by a
constant integer, M, wh/il\st the second stage is by a time-
varying integer, My ,,/M, for the k' subband. Strictly,
k should be denoted %,, since it is time-varying, however
the index is dropped for clarity. M represents the lowest
decimation factor in the structure and therefore defines the
largest subband channel bandwidth, determined by the ap-
plication and as the greatest common denominator of all
possible M, »,

M = ged (M) Yk, n 1)

to provide maximum decimation.

In Figure 1, Block A isan oversampled UFB and Block
B is a subband merging section. This structure is preferred
since A can beimplemented efficiently using fast transforms
of the outputs of adecimated polyphase network and B con-
sistssolely of addersand decimators, allowing NDS through
changesin B only, without the need for intermediate upsam-
pling/downsampling. The synthesis bank is the mirror of
Figure 1. The notation used to define a decompositionis a
‘gplit vector’, the elements of which indicate the bandwidths
of each subband relative to the constituent subband band-
width, e.g. a4-band uniform decomposition (with a 4-band



constituent filterbank) is represented as[1 1 1 1] whereas a
decomposition with the first two bands merged is [2 1 1].

2.2. Block A implementation

For the case of acriticaly sampled NUFB, Block A can be
implemented as a cosine-modulated filterbank (CMF), by
setting C = 2K and M to be a (K xK) cosine modulation
matrix combined with a complex-conjugate summation ma-
trix. This will produce the required, real-valued subbands
aslong as M satifies (2). Implementing the modulation us-
ing a fast DCT gives an overall computational complexity
for Block A, in terms of real multiplies per fullband sample
period (rmfp),

(1/M)(Ly + ((K/2) logy K + K)) )

where L, isthe length of the prototype filter. Since for this
structure M < K, the computational cost of the filterbank
is slightly greater then for a standard filterbank. However,
this can be compensated for by reducing the subband com-
plexity whilst maintaining significant performance advan-
tages over equivalent complexity static structures, as shall
be seen. The oversampled implementation of the structure
isdescribed in [4].

2.3. Contral algorithm

Both critical and oversampled schemes use the same basic
approach. K isinitidisedto Ky = K, i.e. al subbandshave
minimum bandwidth at » = 0, giving the greatest resolu-
tion for merging decisions. The structural adaptation occurs
blockwise, with merging decisions at the end of each block
based on the criterion for the two cases. Smaller bandwidth
subbands are retained where possible, for efficiency. In the
critically sampled case, we attempt to remove large aliasing
errors at the subband boundaries, which are amain cause of
overadl error [2].

3. SUBBAND ERROR ANALYSISFOR
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Fig. 2. SAF model, £t and (k + 1)** subbands

where d(n) = sTx(n). The k™ subband input and desired
signals
ax(n) = hlx(Kn)

L0<k<
di(n) = hId(Kn), 0<k<

=y B

-1 ()
-1 @
which yields the subband input and desired vectors x(n)
and dy.(n), respectively, defined analogously to (5) and (6).
The three length L. subband adaptive filtersin the £ sub-
band are ¢, () and ¢ x+1(n). Thisgivesthe k™" subband
desired-signal estimate c?k(n) and subband error e (n) to be

di(n) = e (n)xi_1(n) + ko (n)xu(n)
el i (M)xpga (n) ©)
ex(n) = di(n)—di(n) (10)

Dropping the index » to indicate optimal values, the mini-
mum MSE (MMSE) in the £ subband can be written

g {ek,min el)‘;,min}
2

Jk,min
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3.1. Subband Wiener-Hopf solution

T T
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Figure 2 showsthe k™ and (k + 1)™ subband filters of a K -
subband uniform SAF, including adjacent-band cross-filters
only, asin [2]. For the k™ analysis filter, the fullband un-
known system, and the fullband input and desired signals,
respectively, we define

T T
Cr k1 Ret+1,k—1Ck k—1 + Ch by 1 RE41,k+1Ck k41 (12)

whereRy,,, = € {x;(n)x},(n)} andp}, = £ {di(n) x],(n)}.
Noting that Ry, = RZL,, that Ry,, isin genera negligi-
bly small when |l —m/| > 2, and extending the method in
Wy = [hio hi - hk,L;,,fl]T 3) (6], we take pgrtlal derivatives of Jj min W.IL thg I!‘]dIVId-
ual filter taps in each SAF and set each to zero giving the

SLS—ﬂT (4)

s=[so 81" following set of Wiener-Hopf equations for the whole SAF
x(n) =[z(n) z(n —1) --- x(n — Ly + 1)}T (5) system
d(n) = [d(n) d(n—1) ---d(n— Lg+1)]"  (6) RgsCss = Pys (12)



where
_ Roo Ro. 0 . 0 0
Rl,O 1{171 1{1’2 0 0
Rws = . . .
| o 0 0 - Rip g9 R g
- Coo €10 0 P 0 0
Co1 €11 C21 v 0 0
Cys = .
| 0 0 0 CM—2,M-1 Cg_q g_1
(13)

Pgs has the same form as Cgs. Rearranging (12) givesthe
subband adaptive filter solutions

Substituting the expressions for p;,,, from (12) into (11)
gives the £ subband error

Jk,rnin = 0—3]\,‘ - Cgsykpws,k (15)

where Cys); isthe £ column of Cgys and Py, is the £
column of Pgs. Thisvauewill notin general be zero dueto
the fact that we are only including adjacent band cross-band
adaptive filters. The actua value depends upon the level of
the non-adjacent aliasing terms, which are usually small.

3.2. Non-uniform subband Wiener-Hopf solution

A non-uniform subband decomposition is constructed through
the merging of appropriate adjacent subbands. Therefore
the non-uniform filterbank has K — 1 subband boundaries
in it's constituent state, i.e. when no bands are merged.
Note that although Figure 2 shows cross-band adaptive fil-
ters, thisisonly for modelling purposes, asthey are not used
in the NDS implementation. Therefore, the initia state of

the system can be represented by
Raysinit diag { [Roo Ri1 -+ Rz _ 1z ]}
Cegysinit diag {[coo €11 -~ x4z 4]}
Pysiit = diag {[poo P11 - Pr_1z_1]}

Rsys,initcsysinit = 1:'sys,ini'r (16)

The set of solutions Cgys;init Will give rise to an error value
that is generally greater than the value in (15) (see [2] for
exceptions) due to the fact that no cross-band filters are
present. We can continue to use the framework to model
the subband errors in the non-uniform case by thinking of
the merging of two subbands as the absence of the bound-
ary between them and the presence of the associated cross-
band adaptive filters. In this sense we equate the system in
(23) with the non-subband minimum error performance and
the system in (16) with the standard critically sampled uni-
form SAF system. In this work, by considering the MM SE
for amerged subband asin (11), we represent general non-
uniform SAF error performance by the inclusion or exclu-
sion of the cross-band terms in the system equations. For

example, consider the system equations for a split vector of
211]

cpo ci0 O 0

Co,1 Ci1,1 0 0
0 0 C2.2 0
0 0 0 C3,3

(17)

Cystz11 =

The off-diagonal terms are those included to represent the
effect of the removal of the subband boundary due to the
merger of the two subbands. The corresponding Rgysa 2 1 1)
and Py, 2 1 1) matrices alsoincludethe corresponding cross-
termsasin (17). We can now use these equations and their
solution for Cgyss 2 1 17 in Order to compute the MMSE for
each non-uniform subband as in (15). In the general case
thiswill be the summation of the constituent subband terms
plusan adjustment which isthe covariance between the con-
stituent desired signals (although in practice thisis usually
small). The desired signal variance in the I"" merged sub-
band composed of I; constituent bands, i; o, 1,1, - - - ,%1,1,—1,
is given by

i —1 i1y —2
G S A2 Y Edda@) 1 @)

i=ip0 i=i1.0

and v = o5 for I; = 1. Thisis approximate as we
1,0

do not include terms of the form & {di(n)dy, ;(n)} where
j > 2 which are usualy negligible. The subband MMSE
for the non-uniform SAF system in the general case isthen
given by

B, -1

2 T
Vg, — Z CwaiPSySi

i=11,0

Jl,min = (19)

where Cgs and P are appropriately formed for the partic-
ular non-uniform decomposition in question. It can be seen
that thisis equivalent to the system in (16) when I; = 1 VI
and equivalent to the system in (13) with Iy = K.

4. SIMULATIONS

4.1. 4-band example

A 4-constituent-band SAF system is simulated in order to
verify the above analysis. An ensemble of 50 white noise
and USASI inputs were applied in a system identification
setup for every alowable decomposition (5 in al), with an
unknown system of S(z) = 272%%. In the white input
case, as expected, the subband errors and improvements
from merges are uniform (except subbands £ = 0 and k =
K — 1 where there is only 1 boundary and hence the error
is lower). This demonstrates that the improvements from
merging are in genera the same for any split vectors with
equal complexity (excluding subbands £ = 0 and £ =
K —1). Inthe USASI case, by contrast, the predicted
and ssimulated values of subband error for each split vector,
shown in Tables 1 and 2 respectively, illustrate the benefits
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Split Vector Subband MM SE - predicted Sum
[11171] 0.1135 | 0.1876 | 0.0553 | 0.0046 0.3610
[211] 0.0431 0.0553 | 0.0046 0.1030
[112] 0.1135 | 0.1876 0.0517 0.3528
[22] 0.0431 0.0517 0.0948
[4] 1.7 x 107° 1.7 x 107°
Table 1. subband errors, USASI input, predicted
Split Vector Subband MM SE - simulated Sum
[1111] 0.1133 | 0.1879 | 0.0554 | 0.0047 0.3613
[211] 0.0438 0.0555 | 0.0047 0.1040
[112] 0.1140 | 0.1870 0.0515 0.3525
[22] 0.0438 0.0509 0.0947
[4] 8.2 x 1071 8.2 x 107"

Table 2. subband errors, USAS! input, simulated

of the non-uniform scheme. The values agree very closdly,
with differences being due to the stochastic nature of the
NLMS algorithm used and the non-adjacent subband cross-
terms. In this case, a split vector of [2 1 1] results in an
MMSE over 5dBs smaller than the split vector of [1 1 2]
which has equal complexity.

4.2. NDSexample

We demonstrate the performance of NDS with a coloured
input z(n) having asingle peak in the spectrum which falls,
in certain cases, a a subband boundary. The unknown sys-
temisS(z) = 271923 whichisrealisticin length and white,
which alows us to observe the differences in performance
due to the input signal characteristics only. Five NDS sys-
temswith K = 16 constituent bands and minimum decima-
tion factor M = 4 are compared with five uniform SAFs of
K =8,7,6,5, 4 subbands. The maximum overall complex-
ity (including the filterbanks) of the NDS systems is set to
the complexity of each of the uniform systems. Figure 3(a)
shows the performance of the uniform SAFs to be highly
variable and not proportional to the complexity of the sys-
tem. Figure 3(b), shows that the performance of each NDS
system isrobust and that the error decreases with increasing
complexity (K decreasing). It was observed that the dy-
namic frequency decomposition converged during the first
2000 iterations to solutions that avoid placing a subband
boundary in the spectra region with high input energy.

5. CONCLUSIONS

This paper has presented an analytical framework for
studying NDS systems. Theanalysisrepresentsnon-uniform
subband decompositions through the presence or absence
of cross-band adaptive filters. The validity of the analysis
is supported by simulations which show that the robustness
of NDS to highly coloured inputs yields improvements of

Fig. 3. Uniform and adaptive critical SAF systems - (a)
uniform fixed decomposition (b) NDS with fixed maximum
complexity

around 5-10dBs in MMSE in the critical case without in-
creasing compl exity.
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