
Abstract— The NLMS algorithm is probably still the most
used algorithm for acoustic echo cancellation systems due to
its well-known useful characteristics: simplicity and robust
performance even if implemented in fixed-point arithmetic.
However, it suffers from a slow convergence rate with
speech signals. On the other hand, the affine projection (AP)
algorithm, which is a generalization of the NLMS algorithm,
has better convergence properties but is computationally
demanding and has some numerical problems. There exists
a computationally more efficient version of the AP
algorithm, namely, the fast affine projection (FAP)
algorithm. But it still has numerical instability problems. In
this paper these problems are hindered by introducing some
modifications to the FAP. Eventually, this new algorithm
comes very close to the adaptive decorrelation NLMS
approach, but it is computationally less demanding.

I. INTRODUCTION

Typically, in acoustic echo control approaches an
adaptive filter algorithm is used to estimate the unknown
acoustic echo path and to form an echo replica that is then
subtracted from the microphone signal. As a result, the
acoustic echo is reduced to some extent. This is briefly
depicted in Fig. 1., where, also, some notations are
introduced. For further details see, e.g., [1]. So far, in
these implementations the NLMS algorithm has been the
most popular adaptation algorithm since it is robust and
simple. However, it convergences slowly with correlated
signals such as speech, which is in echo control
applications a reality.

The aim of this work was to derive an algorithm that
has a better convergence rate than the NLMS algorithm
and would still be economical and robust to implement,
i.e., the algorithm should be computationally efficient and
should not have fixed-point instability problems. The AP
algorithm [2] was chosen as a starting point, since it has
good convergence characteristics [2, 3] and does not need
as much computation as, e.g., the RLS algorithm. Like in
the RLS case, there exist computationally fast versions
for the AP algorithm [4, 5].

The FAP algorithm provides significant
computational savings, so that it requires only slightly
more computational power than the NLMS. It uses a
sliding-window fast RLS method to calculate the inverse
of the data correlation matrix of order p, where p is the
projection order of the FAP algorithm and it is much
smaller than the filter length N. As pointed out in [6], the
use of the fast RLS introduces some problems: The
program code for the sliding-window fast RLS algorithm
is difficult to implement, memory-intensive, and

Figure 1: Application environment, Loudspeaker-
Enclosure-Microphone system, and the adaptive echo
cancellation approach.

potentially numerically-unstable unless special care is
taken in its implementation.

Because of these problems some other solutions for
the inversion of the data correlation matrix have been
suggested. In [6] orthogonal transforms are used to
approximately calculate the affine projection avoiding the
use of the fast sliding-windowed RLS. But this solution
has still error accumulation problems if implemented in
fixed-point arithmetic. As a solution, the use of periodic
restart or leaky integration has been suggested [6]. Both
[7] and [8] use a standard sliding-window RLS-type
approach by utilising the matrix inversion lemma twice.
However, as it is well known, this approach is also
subject to error accumulation.

In [9], the data correlation matrix was approximated to
have Toeplitz form. Since there exist efficient algorithms
to compute the inverse of Toeplitz matrices, this solution
was supposed to maintain the computational efficiency of
the FAP algorithm and, in addition, to be robust in the
fixed-point environment. However, the paper does not
show how the actual inverse is achieved.

This is the framework where we begin. At first, we
make one more simplification in the algorithm of [9],
namely, the error vector is reduced to a scalar, which
provides some computational savings and makes the
inversion even easier to compute. Then, the Levinson-
Durbin algorithm is applied for the inversion.

This new algorithm, the robust FAP, is derived and its
properties are discussed in the next chapter. Then, some
simulation results are shown in order to verify the
theoretical derivations. Finally, conclusions are given.

Robust fast affine projection algorithm for
acoustic echo cancellation

Ville Myllylä

Darmstadt University of Technology, Institute of Communication Technology,
Merckstrasse 25, 64283 Darmstadt, Germany

myllylav@nesi.tu-darmstadt.de, ville.myllyla@nokia.com

g(k)

Σ
-

+

c(k)

e(k) y(k)

v(k)

d’(k)

x(k)

Σ
+

+

Local
speech &

noise

Loudspeaker-Enclosure-
Microphone (LEM) system

Adaptive echo
cancellation

To far-end
speaker

From far-end
speaker

Post-
filtering

Acoustic
echo path

 Acoustic
 echo d(k)

II. ROBUST FAST AFFINE PROJECTION ALGORITHM

In the consequent text, the following notation is used:
italics for scalar variables, bold face for vectors and
matrices, of which matrices are shown in capital letters.
The size of the matrix or vector is also shown in a
subscript, where N denotes the adaptive filter length and p
the projection order of the affine projection algorithms. In
connection with scalars, a subscript denotes a location
index in a vector, e.g., sp(k) = [s1(k), s2(k),…, sp(k)]T. k is
used as a time index and a superscript T denotes the
transpose. Normally scalars are indexed with the time
index like in the excitation vector
xN(k) = [x(k), x(k – 1),…, x(k – N + 1)]T.

A. Fast affine projection algorithm

At first, the AP algorithm is introduced:
)1()()()(, −−= kkkk N

T
pNpp cXye , (1)

[] ,)()()(

,,,, pppN
T

pNpp kkk IXXR δ+= (2)

)()()()()1()(1
,, kkkkkk ppppNNN eRXcc −+−= µ , (3)

where
[])1(),...,1(),()(, +−−= pkkkk NNNpN xxxX (4)

is the N by p excitation matrix, or data sample matrix. In
addition, δI is a regularization term, where δ is a
regularization parameter and I is an identity matrix, and
µ(k) is a step-size parameter. As can be seen from the
equations, the algorithm is quite costly: roughly
2Np + O(p3). Certainly, there is a need for a
computationally faster version, i.e., for the FAP
algorithm.

In Table 1 a so called simplified version of the FAP
algorithm is presented as suggested in [9]. The difference
compared to the original FAP algorithm is that the inverse
of the data correlation matrix, Eq.(2), is calculated
directly in step (A.4), not utilising RLS-like methods. The
residual error vector calculation, Eq.(1), is now done in
steps (A.1), (A.2) and (A.3) utilising a recursive approach
and an alternate filter weight vector zN(k).

Table 1. Simplified FAP algorithm.

)1()()1()(111 −+−= −−− kkxkk ppp xrr (A.1)

)1()(1 −−−− − NkNkx px

)1()()()()()(11 −−−= −− kkkkkyke p
T
pN

T
N srzx (A.2)

−−

=
−)1())(1(

)(
)(

1 kk

ke
k

p
p e

e
µ

 (A.3)

)()()(1
, kkk pppp eRg −= (A.4)

)()(
)1(

0
)(

1

kk
k

k p
p

p g
s

s µ+

−

=
−

 (A.5)

)()1()()1(kspkkk pNNN +−+=+ xzz (A.6)

The filter update, Eq. (3), is done according to the
steps (A.4), (A.5) and (A.6). The actual echo path
estimate filter, cN(k), is not computed, but an

approximation of it, zN(k), instead. In step (A.2), while
calculating the filter error, this approximation is
countered by a correction term. This technique saves us
performing the costly matrix vector multiplications in
Eq.(3).

B. A new formulation

In order to compute the inverse of the data correlation
matrix efficiently in step (A.4) it is possible to use RLS-
like methods or to approximate the data correlation matrix
as a Toeplitz form as suggested in [9]. If we choose, for
example, a projection order of 4 and forget the
regularization for a moment, Eq.(2) becomes:

[]

−−−
−−−
−−−

=

=

)3()2()1()(

)2()2()1()(

)1()1()1()(

)()()()(

)()()(

0123

1012

2101

3210

4,4,4,4

krkrkrkr

krkrkrkr

krkrkrkr

krkrkrkr

kkk N
T

N XXR

, (5)

where)()()(
1

0
ττ −−−Σ=

−

=
ikxikxkr

N

i
 is an estimate of the

autocorrelation at lag τ and at time instant k based on the
past N input data. If N >> p, as it usually is, the following
holds rather well:

)1(...)1()(+−≈≈−≈ pkrkrkr τττ . (6)

Utilizing this approximation, the right hand side of
Eq.(5) becomes a Toeplitz matrix, i.e., it has constant
values along its main diagonals:

=

)()()()(

)()()()(

)()()()(

)()()()(

)(ˆ

0123

1012

2101

3210

4,4

krkrkrkr

krkrkrkr

krkrkrkr

krkrkrkr

kR . (7)

Furthermore, it is symmetric. These properties make the
computation of its inverse very efficient. However, before
proceeding with the inverse, one more simplification is
made.

As suggested by many authors, the error vector can be
reduced to a scalar. As seen in step (A.3), this is totally
valid for a step-size value of 1. For other step-sizes it
becomes an approximation that holds quite well for step-
size values close to 1. This approximation provides
considerable computational savings. At first, step (A.3)
can be omitted. In step (A.4), we note that only the first
column of the data correlation matrix inverse is needed.
This fact leads to a very efficient inversion method.

The Levinson-Durbin algorithm (LDA), see e.g. [10],
solves the following equation for a and E:

[]TE 0,...,0,
1

=

a

T , (8)

where a is a predictor coefficient vector, E is the square
of the prediction error, and T is a symmetric Toeplitz
matrix composed of the autocorrelation coefficients, i.e.,
like Eq.(7). Dividing both sides of Eq.(8) by E, results in:

[]T

E
0,...,0,1

11 =

a

T . (9)

In other words

a

11

E
 is the first column of the inverse

matrix T-1. Thus, the Levinson-Durbin algorithm is all
that is needed for the "inversion" of the data correlation
matrix. Furthermore, almost all the autocorrelation
estimate values needed to specify the matrix are already
available after step (A.1). Only the autocorrelation value
at zero lag is missing but can be easily added. The
resulting algorithm is presented in Table 2.

Table 2. Robust FAP algorithm.

I Error calculation

Note: []Tpp krkrkrk)(),...,(),()(32...2 =r

)()()1()(kkxkk ppp xrr +−= (B.1)

)()(NkNkx p −−− x

)1()()()()()(1...2 −−−= − kkkkkyke p
T

pN
T
N srzx (B.2)

II Levinson-Durbin

Initialilize: E0(k) = r1(k), C0(k) = r2(k)

Note: []Tppp aaak 11,...,,)(ˆ −=a means a reverse of ap(k).

For i = 1 to p-1

)()()(11 kEkCkK iii −−−= (B.3.1)

 +
= −−

)(

)(ˆ)()(
)(11

kK

kkKk
k

i

iii
i

aa
a (B.3.2)

)()()()(11 kCkKkEkE iiii −− += (B.3.3)

= + 1

)(ˆ
)()(2...2

k
kkC i

ii

a
r (B.3.4)

end

III Update of the approximate weight vector

=

−−)(

1

)(

)(
)(

11
kkE

ke
k

pp
p a

g (B.4)

)()(
)1(

0
)(

1

kk
k

k p
p

p g
s

s µ+

−

=
−

 (B.5)

)()1()()1(kspkkk pNNN +−+=+ xzz (B.6)

C. Algorithm properties

1) Stability issues

The Levinson-Durbin algorithm (Table 2, part II)
provides good properties against instability. At first, the
reflection coefficient, or so called PARCOR coefficient,
K (Table 2, step B.3.1) can be used to monitor the
stability of the algorithm (to be exact, the definition of the
PARCOR coefficient has the opposite sign). The
necessary and sufficient condition for the Toeplitz matrix

in Eq.(8) to be positive definite, i.e., to have an inverse, is
|K| < 1, (see, e.g., [11]). Thus, if in any stage it becomes
close to one, the LDA can be terminated and, for that
iteration, the step-size can be simply assigned to zero to
avoid further problems. It is not necessary to use any
regularization. However, less iterations will be lost if a
relatively small value is added to the first autocorrelation
coefficient r1(k). Alternatively, an ordinary NLMS-update
can be performed in case of inversion problems.

A second advantage of the use of the LDA is that it is
recursive only within the projection order p and not with
the time instant k. That is, there is no error accumulation
between time instants since all values within the LDA are
computed from scratch for each time instant k.

In the error calculation part, step (B.1) should be
implemented with an appropriate rounding. Otherwise,
this part does not permit error accumulation. Similarly,
the last part, the update of the approximate weight vector,
is apparently not a source for instability problems.

2) Complexity

The robust FAP algorithm is rather efficient. The first
part, or the error calculation, takes N + 3p multiplications.
The second part, the LDA, uses about p2 + 0.5p
multiplications and p - 1 divisions. Finally, the update of
the approximate weight vector consumes about N + p
multiplications and 1 division. Altogether, this makes
2N + p2 + 4.5p multiplications and p divisions, i.e.,
roughly 2N + p2 + 6p operations. In Table 3, the robust
FAP is compared to other FAP-like algorithms.

Table 3. Computational complexity (number of divisions
and multiplications) of different FAP-like algorithms. The
additional (NLMS) cost 2N is omitted.

Algorithm Upper
limit Detailed p = 4 p = 10

Simplified
FAP [9]

O(p3) - - -

FAP-RLS [7] O(5p2) 5p2 80 500

FAP-RLS [8] O(3p2) 3p2 + 12p 96 420

Toeplitz FAP
[9]

O(2p2) - - -

Robust FAP O(p2) p2 + 6p 40 160

FAP [4, 5] O(20p) 20p 80 200

Approximate
impl. [6]

O(16p)
9p+

plog2p – 3
41 121

FAP with
scalar error

O(14p) 14p 56 140

3) Comparison to pre-whitening NLMS

The new algorithm becomes very close to adaptive
decorrelation NLMS approaches [12, 13], where the
predictor coefficients have to be computed, too. Utilising
these coefficients, the adaptation signals for NLMS are
then whitened. Finally, the echo replica is generated by
filtering the excitation signal with the estimated echo path
impulse response. In this approach, the echo path impulse
response filtering has to be conducted twice, namely, for

speech and whitened speech. While the filter length N is
the dominating part in the algorithm complexity, this
makes the pre-whitening approach more demanding even
if the predictor coefficients are updated only periodically.

4) Discussion

There are several points in the algorithm where
different choices can be made. At first, different
windowing approaches can be used for recursive updating
of the autocorrelation coefficients in step (B.1) instead of
a rectangular window. However, this might require
additional computations, since in step (B.2), rectangular
windowing is needed to maintain the FAP structure.
Nevertheless, for example, exponential windowing can be
used to enhance the stability properties of the coefficients.
Furthermore, the updating of the predictor coefficients
may be periodic in order to save computations. Finally, a
full inverse matrix can be calculated quite efficiently from
the predictor coefficients by utilising the Gohberg-
Semencul relation [14] in case the use of the full vector
error is desired.

III. SIMULATION RESULTS

Simulations were conducted to get an idea about the
algorithm behavior. The performance of the NLMS, the
AP and the robust FAP algorithm were compared in the
ideal adaptation case, i.e., there was neither near-end
speech nor background noise and the used echo path
length was the same as the filter length, or 300 in 8 kHz
sampling frequency. In this case, a fixed step-size of 1
was utilized and the projection order p for the projection
algorithms was 4. Twelve different speech sentences
(6 male, 6 female), each of length 5 seconds, were put
together to form a 60 seconds long excitation signal.
There were two real impulse responses measured from a
car that were switched after each sentence, i.e., in every 5
seconds, to simulate echo path changes. Then the average
of the system error norm,

()2
)()(log10)(kkkgdB gc −=∆ , (10)

was computed over these twelve sequences resulting 5
seconds long average. Thus, the average contains one
initial convergence curve and 11 convergence curves after
echo path changes. The first two seconds of these
averages are shown in Fig. 2.

From the figure, it can be seen that the new algorithm
performs better than the NLMS, but is yet a bit slower
than the original AP algorithm. The main reason for this
is the fact that the inversion in the AP algorithm was
performed with the built-in Matlab® inv(.)-function,
which handles instability problems very well. In contrast,
in the new algorithm version, an ordinary NLMS step has
to be performed every now and then because of the
instability problems in the LDA.

IV. CONCLUSIONS

In this paper, a robust FAP algorithm was formulated,
which is supposed to be robust even if implemented in
fixed-point arithmetic. Furthermore, it is computationally
very efficient. This was achieved by reducing the filter
error vector to a scalar, simplifying the data correlation

matrix to become of a Toeplitz form, and applying the
Levinson-Durbin algorithm on its partial inverse. The
new algorithm performs better than the NLMS and is only
slightly slower than the original affine projection
algorithm due to simplifications in its derivation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-35

-30

-25

-20

-15

-10

-5

0

Time [s]

S
ys

te
m

 e
rr

or
 n

or
m

 [d
B

]

NLMS
AP
Robust FAP

Figure 2: Comparison of the different algorithms in
an ideal adaptation case.

V. REFERENCES

[1] Breining C., Dreiseitel P., Hänsler E., et al, "Acoustic echo
control - an application of very-high-order adaptive filters",
IEEE Signal Processing magazine, Vol. 16, No. 4, 1999.

[2] Ozeki K., Umeda T., "An adaptive filtering algorithm using an
orthogonal projection to an affine subspace and its properties",
Electronics and Communications in Japan, Vol. 67-A, No. 5,
1984.

[3] Sankaran S., Beex A., "Convergence behavior of affine
projection algorithms", IEEE Transactions on signal
processing, Vol. 48, No. 4, 2000.

[4] Tanaka M., Kaneda Y., Makino S., and Kojima J., "A fast
projection algorithm for adaptive filtering", IEICE Trans.
fundamentals, Vol. E78-A, No. 10, 1995.

[5] Gay S., Tavadia S., "The fast affine projection algorithm",
Proc. ICASSP-95, 1995.

[6] Douglas S., "Efficient approximate implementations of the fast
affine projection algorithm using orthogonal transforms", Proc.
ICASSP-96, 1996.

[7] Kaneda Y., Tanaka M., and Kojima J., "An adaptive algorithm
with fast convergence for multi-point sound control", Proc.
ACTIVE-95, 1995.

[8] Liu Q., Champagne B., Ho K., "On the use of a modified fast
affine projection algorithm in subbands for acoustic echo
cancellation", Proc. 7th IEEE DSP Workshop 96, 1996.

[9] Oh S., Linebarger D., Priest B., and Ragothaman B., "A fast
affine projection algorithm for an acoustic echo canceller using
a fixed-point DSP processor", Proc. ICASSP-97, 1997.

[10] Strobach P., "New forms of Levinson and Schur algorithms",
IEEE Signal Processing magazine, Vol. 8, No. 1, 1991.

[11] Wang Y., Krishna H., Krishna B., "Split Levinson algorithm is
weakly stable", Proc. ICASSP-89, 1989.

[12] Yamamoto S., Kitayama J., Tamura J., and Ishigami H., "An
adaptive echo canceller with linear predictor", Trans. IECE of
Japan, Vol. 62, No. 11, 1991.

[13] Frenzel R., Hennecke M., "Using prewhitening and stepsize
control to improve the performance of the LMS algorithm for
acoustic echo compensation", Proc. ISCAS-92, Vol. 4, 1992.

[14] Cernuschi-Frias B., "A derivation of the Gohberg-Semencul
relation", IEEE Transactions on Signal Processing, Vol. 39,
No. 1, 1991.

