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ABSTRACT

This contribution presents a time varying optimal smooth-
ing parameter for periodograms which are smoothed over
frequency and time. While the spectral smoothing is imple-
mented as an average over adjacent Discrete Fourier Trans-
form (DFT) bins the temporal smoothing is achieved by
means of a �rst order recursive system. The smoothing
parameter of this recursive system minimizes a conditional
mean square error criterion and is optimal for chi-square
distributed frequency domain data. The optimal smoothing
is especially useful for tracking the power spectral density
of noisy speech signals.

1. INTRODUCTION

Most single-microphone speech enhancement algorithms re-
quire an explicit estimate of the noise power spectral den-
sity (psd). E.g., the MMSE estimator of the clean speech
Discrete Fourier Transform (DFT) coeÆcients or their mag-
nitude is often de�ned in terms of a priori and a posteri-

ori SNR values [1, 2, 3]. The computation of these SNR val-
ues necessitates the estimation of the noise psd. This noise
psd estimate is usually computed by smoothing magnitude
squared DFT coeÆcients jY (�; k)j2 of the noisy signal y(i)
and by employing a voice activity detector or the Minimum
Statistics [4, 5] noise tracking approach. The DFT coeÆ-
cients Y (�; k) are obtained from

Y (�; k) =

L�1X
�=0

y(�R+ �)h(�) exp(�j2�k�=L) (1)

where h(�) denotes a window function, � is the subsam-
pled time index, � 2 Z, and k denotes the frequency bin
index, k 2 f0; 1; :::; L � 1g, which is related to the normal-
ized center frequency 
k by 
k = 2�k=L. R denotes the
shift between successive signal frames. To simplify our no-
tation we assume

P
L�1

�=0
h
2(�) = 1. Because the human

ear has less frequency resolution at higher frequencies than
at lower frequencies speech (and audio) signals are often
processed in Bark scaled frequency bands. Bark scale pro-
cessing can also lead to signi�cant computational savings
and is therefore attractive for real time implementations of
speech enhancement systems. A simple method to obtain
approximately Bark scaled noise psd estimates is to average
magnitude squared Fourier coeÆcients over adjacent DFT
bins, i.e.,

B(�; k) =
1

2Nk + 1

k+NkX
`=k�Nk

jY (�; `)j
2

(2)

where k is the index of the center frequency bin and 2Nk+1
is the number of averaged bins of this band. Obviously,
another consequence of smoothing over frequency is the re-
duction of the variance of the spectral data which is most
pronounced when adjacent frequency bins are statistically
independent.

Given the averaged periodogram B(�; k), the �nal noise
psd estimate is obtained by temporally smoothing over suc-
cessive DFT frames using a �rst order recursive system

P (�; k) = �(�; k)P (�� 1; k) + (1� �(�; k))B(�; k) (3)

where �(�; k) is a time and frequency dependent smoothing
parameter.

The smoothing parameter �(�; k) has to satisfy con-

icting requirements. When the noise is stationary �(�; k)
should be close to one to achieve a small variance of the psd
estimate. When the noise is not stationary, the smoothing
parameter must be small enough to enable fast tracking. In
this contribution we derive a solution for a time and fre-
quency dependent �(�; k) which minimizes a mean square
error criterion. As an extension of a result given in [5], the
new optimal smoothing parameter also accounts for spec-
tral smoothing.

2. STATISTICAL MODELLING OF

AVERAGED DFT COEFFICIENTS

When y(i) is stationary with a relatively small span of cor-
relation and the frame size L is large the real and imagi-
nary part of a DFT coeÆcient Y (�; k), k 62 f0; L=2g, can be
considered to be independent and can be modelled as zero
mean Gaussian random variables [6]. Under these assump-
tions each periodogram bin jY (�; k)j2 is an exponentially
distributed random variable with probability density func-
tion (pdf)

f
jY (�;k)j2(x) =

U(x)

�2
Y
(�; k)

exp(�x=�
2
Y (�; k)) (4)

where �2Y (�; k) = EfjY (�; k)j2g is the power spectral den-
sities of the noisy signal, �2Y (�; k) = �

2
S(�; k) + �

2
N (�; k).

�
2
S(�; k) and �

2
N(�; k) denote the power spectral density of

the speech and noise signal, respectively. The speech and
the noise signal are considered to be statistically indepen-
dent. U(x) is the unit step function, i.e., U(x) = 1 for x � 0
and U(x) = 0 otherwise. Obviously, during speech pause,
�
2
S(�; k) � 0, the mean and the variance of jY (�; k)j2 are

equal to �
2
N(�; k) and �

4
N (�; k), respectively. To simplify



the discussion we will now assume that no speech is present
and will discuss the case of speech activity later on.

The exponential density can be also interpreted as a
special case of the more general �2 density with K = 2
degrees of freedom

f�2 (x) =
KU(x)

2�2
N
�(K=2)

(
xK

2�2
N

)
K=2�1

exp(
�xK

2�2
N

) (5)

which arises as the distribution of the sum of squared i.i.d.
Gaussian random variables. �(�) is the complete Gamma
function [7]. K is determined by the number of independent
random variables and is related to the variance of the �2-
distributed variable by varf�2g = 2�4N=K.

Neighboring periodogram bins are asymptotically inde-
pendent. For k > Nk and k < L=2 � Nk the probabil-
ity density of the spectrally averaged periodogram B(�; k)
can be therefore approximated by a �

2-distribution with
K = 4 � Nk + 2 degrees of freedom [6, Theorem 5.4.3].
When h(�) is a tapered analysis window the variance of
the averaged periodogram is larger than for the untapered
(rectangular) case. The di�erence between these two cases
is approximately (L ! 1, Nk ! 1, Nk=L ! 0) given by
the factor [6, Theorem 5.6.4]

FW = L

L�1X
�=0

h
4
(�)
."L�1X

�=0

h
2
(�)

#2
: (6)

Hence, in the case of a tapered analysis window we might
approximate the pdf of B(�; k) by a �2-distribution with

eK(k) = K(k)=FW = (4Nk + 2)=FW (7)

\equivalent" degrees of freedom. Generally, Nk varies with

k. Therefore, the equivalent degrees of freedom eK(k) are
also a function of k. Equation (7) will be used below for
estimating the degrees of freedom of the Bark scaled av-
eraged periodograms when a large number of DFT bins is
averaged. E.g., for a 256 point Hann window we obtaineK(k) = 0:516K(k). When a relatively small number of
bands is averaged the theoretical limit is not accurate and

the equivalent degrees of freedom eK(k) must be determined
numerically. For the 256 point Hann window, Figure 1 plots

the equivalent degrees of freedom eK normalized on the de-
grees of freedom K = 4 �Nk + 2 which are obtained in the
untapered case for L ! 1 and an input signal y(i) which
is white Gaussian noise.

To conclude this Section, we note that approximations
for the variance of the averaged periodogram B(�; k) are
also available when neighboring DFT bins are not equally
weighted [6]. This modi�ed weighting can be used to em-
phasize those bins which are close to the center bin of a
given frequency band. Thus, the bias with respect to the
true power spectral density at the frequency of the center
bin can be reduced when the power spectral density varies
in the neighborhood of the center bin.

3. OPTIMAL FIRST ORDER RECURSIVE

SMOOTHING

To derive the optimal smoothing parameter we assume that
no speech is present. In this case we want P (�; k) in (3) to
be as close as possible to the true noise psd �2N (�; k). There-
fore, our objective is to minimize the conditional mean
square error

Ef(P (�; k)� �
2
N (�; k))

2
j P (�� 1; k)g (8)
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Figure 1: Equivalent degrees of freedom eK normalized on
K = 4 �Nk + 2 for an L = 256 point Hann window (solid)
and the theoretical limit (dashed) according to (7). The
number of averaged DFT bins equals K=2.

from one iteration to the next. After substituting (3) into
(8) and using EfB(�; k)g � �

2
N(�; k) and EfB2(�; k)g �

( eK(k)+2)�4N(�; k)= eK(k) for �2-distributed data with eK(k)
degrees of freedom, the optimal smoothing parameter is
given by (see Appendix A)

�opt(�; k) =
2

2 + eK(k)(P (�� 1; k)=�2
N
(�; k)� 1)2

(9)

and for eK(k) = 2 (no frequency averaging) by

�opt(�; k) =
1

1 + (P (�� 1; k)=�2
N
(�; k)� 1)2

: (10)

The quotient P (��1; k)=�2N (�; k) = 
(�; k) in (9) and (10)
is a smoothed version of the a posteriori SNR [1],


(�; k) =
jY (�� 1; k)j2

�2
N
(�; k)

: (11)

Figure 2 plots the optimal smoothing parameter �opt

for 0 � 
 � 10 and eK 2 f2; 8; 32g. Since the optimal
smoothing parameter �opt is between zero and one a stable
and non-negative noise power estimate P (�; k) is guaran-
teed. Finally, after substituting �opt(�; k) into (8) we �nd
the minimum mean square error

Ef(P (�; k)� �
2
N (�; k))

2
j P (�� 1; k)gj�=�opt

=
2eK(k)

�
4
N (�; k)(1� �opt(�; k)) :

(12)

For stationary noise 
(�; k) will be close to one since
the smoothed periodogram converges to the true noise psd.
In this case �opt(�; k) is near unity and a low variance of
the smoothed periodogram is achieved. When the noise is
non-stationary the smoothing parameter will be reduced to

enable rapid tracking. For eK > 2 the periodogram data is
smoothed over frequency and has therefore a smaller vari-

ance. Thus, for eK > 2 deviations of the smoothed psd es-
timate P (�; k) from the target psd �

2
N (�; k) lead to a more
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Figure 2: Optimal smoothing parameter �opt as a function

of the smoothed a posteriori SNR 
(�; k) for eK 2 f2; 8; 32g.

rapid decay of the smoothing parameter. When speech is
present in the noisy signal y(i), P (�; k) is not an estimate of
the noise psd anymore. However, the in
uence of speech on
the optimal smoothing parameter is similar to highly non-
stationary noise. In any case, the smoothing parameter will
be reduced to small values and thus enables fast tracking of
the time varying signal power. This behavior is actually of
great advantage when this smoothing method is combined
with a Minimum Statistics noise estimator [5].

Note, that the smoothing parameter �opt(�; k) is quite
di�erent to the soft-decision smoothing law proposed in [8].
The update control in [8] shifts the balance in (3) towards
a lower proportion of the smoothed variable P (� � 1; k)
whenever the a posteriori SNR is close to one. This results
in a high update rate for the noise estimate during speech
pause but also a higher variance of the noise psd estimate.
The non-stationarity of the noise is therefore not explicitly
taken into account. In our smoothing approach we utilize
the statistics of the a posteriori SNR (or averaged versions
thereof) to track non-stationary noise and to minimize the
variance of the noise psd estimate.

3.1. Error Monitoring

Since the application of the optimal smoothing parame-
ter requires a noise psd estimate the proposed smoothing
method is used in conjunction with, e.g., the Minimum
Statistics noise psd estimator [5]. In a practical implemen-
tation of the optimal smoothing parameter (9) we replace
the true noise psd �

2
N (�; k) by its latest estimated valueb�2N (�� 1; k) and limit the smoothing parameter to a max-

imum value �max, e.g. �max = 0:96, to avoid dead lock for

(�; k) = 1.

In general, the time evolution of the estimated noise psdb�2N (�; k) lags behind the time evolution of the true noise psd
(tracking delay). As a consequence, the estimated noise psd
might be smaller or larger than the true noise psd and thus,
the estimated smoothing parameter might be too small or
too large. Problems may arise when the smoothing param-
eter is close to one since then the smoothed psd estimate
P (�; k) cannot react quickly to changes in the true noise
psd. Given this uncertainty in the noise psd estimate the
tracking error in the smoothed short term psd P (�; k) must

be monitored. When tracking errors are detected the opti-
mal smoothing parameter must be decreased to guarantee
reliable operation under all circumstances.

Tracking errors in the short term estimate P (�; k) can
be monitored by comparing P (�; k) to a reference quantity,
for instance the frequency averaged periodogram. Our mon-
itoring algorithm therefore compares the average short term
psd estimate of the previous frame 1

L

P
L�1

k=0
P (�� 1; k) to

the average periodogram 1

L

P
L�1

k=0
jY (�; k)j2 and thus de-

tects deviations of the short term psd estimate from the
actual averaged periodogram. The result of this compari-
son can be used to modify the smoothing parameter in case
of large deviations.

The comparison between the average smoothed psd es-
timate and the average actual periodogram is implemented
by means of a \soft" 1=(1 + x

2) characteristic

e�c(�) = 1

1 + (
P

L�1

k=0
P (�� 1; k)=

P
L�1

k=0
jY (�; k)j2 � 1)2

(13)

and the resulting correction factor is limited to values larger
than 0.7 and smoothed over time

�c(�) = 0:7 �c(�� 1) + 0:3 max(e�c(�); 0:7) : (14)

The smoothing parameter in recursion (14) was chosen em-
pirically. The multiplication of the correction factor with
the optimal smoothing parameter then yields the �nal time
and frequency dependent smoothing parameter

b�(�; k) = 2�max �c(�)

2 + eK(k)(P (�� 1; k)=b�2
N
(�� 1; k)� 1)2

: (15)

4. EXPERIMENTAL RESULTS

We verify the bene�ts of the proposed smoothing method
by processing a time varying synthetic white Gaussian noise
signal with the above algorithm (sampling rate 16 kHz, L =
512). The �rst 3 seconds of this signal have constant power.
For the next 5 seconds we add a white Gaussian noise which
is amplitude modulated by a sine wave with a modulation
frequency of 2 Hz. The composite signal is therefore repre-
sentative of a stationary noise signal with an additive non-
stationary component such as speech. We compare the es-
timated power for our time varying smoothing method with
the estimated power for a constant smoothing parameter of
� = 0:96. The noise psd estimate required for the compu-
tation of b�(�; k) was obtained from a Minimum Statistics
noise psd estimator [5]. Subplot A of Figure 3 plots the re-
sulting time varying smoothing parameter (dashed) and the
constant smoothing parameter (dotted). Subplot B plots
the smoothed power for the proposed smoothing algorithm,
the true signal power, and the noise power estimate as ob-
tained from the Minimum Statistics method. Subplot C
depicts the smoothed power, the true signal power and the
Minimum Statistics noise power estimate for the smoothing
with a constant smoothing parameter � = 0:96. Finally, in
subplot D we plot the mean square error (MSE) between the
smoothed power and the true noise power for both smooth-
ing methods. Note, that all quantities in Fig. 3 are averaged
over all frequency bands. We �nd that for stationary noise
the time varying smoothing parameter achieves approxi-
mately the same MSE as the constant smoothing parameter
and that the Minimum Statistics noise power estimator de-
livers a noise power estimate which is representative of the



0

0

0
0

0
0

0
0

0:5

1

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

10

10

20

-20

-40

A

B

C

D

b�(�; k)

b�(�; k)

b�(�; k)

time/s

�

s
ig
n
a
l
p
o
w
e
r

s
ig
n
a
l
p
o
w
e
r

M

S
E

/

d
B

� = 0:96

� = 0:96

� = 0:96
true power

true power

b�2
N
(�; k)

b�2
N
(�; k)

Figure 3: Results of processing a modulated white Gaus-
sian noise with proposed (subplot B) and with a constant
(� = 0:96, subplot C) smoothing parameter. A: Smoothing
parameters; B,C: Estimated power, true power, and esti-
mated noise 
oor; D: Mean square errors.

stationary component within the signal (subplot B). How-
ever, the constant parameter does not allow tracking of the
signal power when the signal is modulated. Therefore, after
a transient period the noise power estimate delivered by the
Minimum Statistics estimator is signi�cantly too large for
� = 0:96 (subplot C). On the other hand, a small constant
smoothing parameter such as � = 0:6 results in tracking
properties similar to the proposed method. However, the
error variance for the stationary part of the signal is signi�-
cantly larger for � = 0:6 than for the time varying smooth-
ing parameter (not shown in Figure 3).

The proposed smoothing algorithm was successfully em-
ployed in a wideband speech enhancement system (sampling
rate 16 kHz, L = 512). For the computation of the noise
estimate 257 DFT bins were grouped into 22 Bark scaled
frequency bands with signi�cant computational savings.

APPENDIX A: DERIVATION OF THE

OPTIMAL SMOOTHING PARAMETER

We minimize Ef(P (�; k) � �
2
N(�; k))

2jP (� � 1; k)g where
P (�; k) is given by (3). After substituting (3) into the error
criterion we obtain

Ef(�(�; k)(P (�� 1; k)�B(�; k)) +B(�; k)� �
2
N (�; k))

2
g:

(16)

Di�erentiating (16) with respect to �(�; k) and equating
the result to zero leads to

Ef(�(�; k)(P (�� 1; k)�B(�; k)) +B(�; k)� �
2
N(�; k))

� (P (�� 1; k)�B(�; k))g = 0

(17)

By solving for �(�; k) we obtain

�opt(�; k) =

Ef(P (�� 1; k)�B(�; k))(�2N (�; k)�B(�; k))g

Ef(P (�� 1; k)�B(�; k))2g
:

(18)

Substituting EfB(�; k)g = �
2
N (�; k) and EfB2(�; k)g =

(1 + 2= eK(k))�4N (�; k), where eK(k) denotes the equivalent
degrees of freedom we obtain for the numerator of (18)

Ef(P (�� 1; k)�B(�; k))(�
2
N(�; k)�B(�; k))g =

2�4N (�; k)eK(k)

(19)

and the denominator of (18)

Ef(P (�� 1; k)�B(�; k))
2
g =

2�4N (�; k)eK(k)
+ (P (�� 1; k)� �

2
N(�; k))

2
:

(20)

The optimal smoothing parameter is therefore given by
(9). Since the second derivative of the mean square error,
2Ef(P (��1; k)�B(�; k))2g, is non-negative a minimum is
obtained.
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