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ABSTRACT

In this paper, different step-size controls for LMS (Least-
Mean-Squares) filters are proposed, which explicitly con-
sider the input-signal correlation. The discussed algorithms
are derived from the optimum Kalman filter and modified
according to the constraint of a scalar step size, which itself
must be a function of only scalar update parameters.

1. INTRODUCTION

Various step-size controls (SSC) for LMS filters have been
published in the literature, e.g. [6], [3], which are, however,
based on white input signals. In contrast to the optimum
Kalman filter, a scalar SSC is not able to decorrelate a cor-
related input signal. It is nonetheless worthwhile to con-
sider this correlation in the SSC design to at least avoid
a correlation-dependent error propagation in the recursive
updates. We propose three different versions of such SSCs,
which allow to consider the input-signal correlation by an
adjustment of one single parameter.

Under the constraint of a scalar step size the Kalman
filter is reformulated in Section 2. The resulting optimum
scalarized Kalman filter (SKF), however, is still dependent
on the recursively updated system covariance matrix. By
means of an auxiliary parameter, the input-signal corre-
lation dependent fading factor, the matrix-updates are ap-
proximated by scalar updates in Section 3. A detailed anal-
ysis of the fading factor as well as a comparative simulation
of the obtained SSCs are given in Section 4.

2. OPTIMUM STEP SIZE

The unknown system, which is assumed to be time inva-

riant, is characterized by the state vector x = [x1 . . . xN ]T

containing the N impulse-response coefficients. For each
input-signal vector un = [un . . . un−N+1]

T , a noisy output
signal

dn = uT
nx + vn , vn ∼ N ( 0 , sn ) , (1)

can be observed, where vn is the random Gaussian mea-
surement noise with variance sn. We consider the common
LMS algorithm, i.e.

en = dn − uT
n x̂n (2)

x̂n+1 = x̂n + µnunen , (3)

which performs a real-time estimate x̂n of x. It is intended
to find a step size µn minimizing the average system dis-
tance pn, i.e.

pn

� 1

N
tr (Pn) , Pn

�
E

�
x̃nx̃T

n � , (4)

at each instant of time. Pn is the covariance matrix of the
coefficient-error vector x̃n

�
x − x̂n. In our discussion it is

important to distinguish between the ensemble variance of
en, which is defined by

rn = E � e2n � = uT
nPnun + sn = `n + sn , (5)

and its temporal variance, which corresponds to

r̄n = Et � e2n � = tr (Ru nPn) + sn = ¯̀
n + sn . (6)

Ru n is the input-signal autocorrelation matrix, and `n (¯̀n)
stands for the ensemble (temporal) systematic error vari-
ance. (The measurement noise vn is assumed to be ergodic,
hence Et � v2

n � = E � v2
n � = sn.)

Based on the update equation of the coefficient-error
vector, i.e.

x̃n+1 = � I − µnunuT
n � x̃n − µnunvn , (7)

the corresponding update of Pn evaluates to

Pn+1 = Pn −µn � unuT
nPn + PnunuT

n � +µ2
nunuT

n rn . (8)

After computing the trace of (8) and dividing the result by
N , we obtain

pn+1 = pn − 2µn
`n
N

+ µ2
n

‖un‖
2

N
(`n + sn) . (9)

Although (9) only consists of scalar quantities, the matrix
Pn must be available to obtain `n. In order to circumvent
this computationally expensive burden, we introduce a so-
called fading factor ηn defined by

ηn =
`n

pn‖un‖2
, (10)

such that `n can be substituted by a product of scalar val-
ues. Using (10) in (9), setting the derivative of (9) with
respect to µn equal to zero, and solving for µn yields the
optimum (superscript “opt”) step size, i.e.

µopt
n =

ηnpn

ηn‖un‖2pn + sn

(11)

with the corresponding pn-update, i.e.

pn+1 = � 1 − ηnµ
opt
n

‖un‖
2

N � pn . (12)

Equations (2)–(3), and (10)–(12) will be referred to as the
optimum scalarized Kalman filter (opt SKF) for a time in-
variant system.



3. APPROXIMATIONS

In most cases there is no information available to accurately
determine the fading factor ηn. However, simulations of
the opt SKF (see Figure 1) show that ηn almost retains a
constant value. Moreover, we proof in Appendix A that, for
a stationary input signal, the fading factor is (in the mean)
smaller than (or equal to) one. Equality holds only in the
case of an uncorrelated input signal. Referring to Figure 1,
we will approximate the fading factor by a constant value,
i.e ηn

∼= η, and emphasize that, depending on the input
signal correlation, this value may considerably deviate from

one. In addition, to avoid the appearance of η in the step-
size definition (11), the quantity

p′n = η · pn (13)

instead of pn will recursively be updated henceforth. Note
that this has no effect on the pn-update equation (12) except
for the choice of the initial conditions, i.e. p′0 = ηp0.

3.1. Ensemble-Variance Approximation (EVA SKF)

As already announced, we set the fading factor to a constant
value, i.e.

ηn =
`n

‖un‖2pn

∼= η . (14)

Using (14) and (13), the step-size control (11) and (12) can
directly be modified to

µn =
p′n

‖un‖2p′n + sn

; p′n+1 = � 1 − η
‖un‖

2

N
µn � p′n .

(15)
This algorithm, which will be referred to as the scalar-
ized Kalman filter with ensemble-variance approximation

(EVA SKF), requires the knowledge of the measurement-
noise variance sn. If η = 1, the EVA SKF is very similar to
the step-size control for uncorrelated input signals (referred
to as UIS SSC) published in [3].

3.2. Partial Temporal-Variance Approximation

A temporal average of the innovation variance as well as
the input-signal power can easily be computed as

r̄n = ¯̀
n + sn = γrr̄n−1 + (1 − γr) e

2
n (16)

λ̄n = γrλ̄n−1 + (1 − γr)u
2
n . (17)

Based on (10) and the assumption of a constant η, a tem-
poral average of the systematic error variance evaluates to

¯̀
n = ηNλ̄npn . (18)

Hence, a near-at-hand approximation is carried out by re-
placing `n by ¯̀

n, such that (9) turns into

pn+1 = (1 − 2ηλ̄nµn)pn + µ2
n

‖un‖
2

N
r̄n . (19)

After computing the optimum step size for the recursion
(19) and applying the substitution (13), we obtain the fol-
lowing equations for the step size and the corresponding
update of pn, i.e.

µn =
Nλ̄np

′
n

r̄n

1

‖un‖2
; p′n+1 = � 1 − ηλ̄nµn � p′n . (20)

In this algorithm, only ¯̀
n (and consequently also r̄n)

is computed temporally; the norm of the input-data vector
‖un‖

2 itself still represents an instantaneous rather than a
temporally averaged quantity. This fact explains the ex-
pression “partial” in the title of this subsection.

It is interesting to note that the step size in (20) co-
incides with that of the Normalized Least-Mean-Square al-
gorithm (NLMS) derived in [5]. However, different proce-
dures, such as the “delay-coefficient”-method [7], are pro-
posed to estimate the average system distance. Here, the
SSC (20) is derived from the scalarized Kalman filter, which
is itself based on a state-space model of the unknown sys-
tem. We will thus refer to this SSC as the model-based

NLMS algorithm (MB NLMS).

3.3. Temporal-Variance Approximation (TVA SKF)

Starting from the MB NLMS algorithm, the third and most
simple version of the scalarized Kalman filter can be found
by invoking the following additional approximation:

‖un‖
2 −→ Nλ̄n . (21)

In comparison with the MB NLMS algorithm, (21) has no
influence on the update equation of p′n and the specification
of the fading factor. However, thanks to the cancellation of
‖un‖

2 and Nλ̄n, the step size of (20) turns into

µn =
p′n
r̄n

. (22)

This SSC is referred to as the SKF with temporal-variance

approximation (TVA SKF).
In Table 1, the update equations of the opt SKF of

Section 2 and the three approximations of the opt SKF
discussed in this section are summarized.

4. DISCUSSION

The fading factor will now be closer investigated. In the
simulations of Figure 1 the fading factors of a 128-tap opti-
mum SKF are monitored for three different first-order AR
(autoregressive) input signals and two different measure-
ment-noise variances. According to these numerical results,
we recognize that the more un is correlated the smaller η
is, because the input-signal correlation decelerates the con-
vergence of p′n (and consequently also µn).

However, practical rules for the adjustment of η are still
missing. Fortunately, the optimum Kalman filter (opt KF)
gives us an elegant thumb rule to approximately determine
η. The simulations of Figure 1 show that the monitored ηn

of the opt SKF come surprisingly close to the corresponding
(straight-lined) virtual (steady-state) fading factors of the
opt KF (superscript “KF”), i.e.

η ∼= ηKF
n ��� n→∞

=
tr � Ru PKF

∞ �
λ̄tr (PKF

∞ )
. (23)

We show in Appendix B that, in case of a stationary input
signal, (23) approaches the value

η ∼=

�
λ̄

N

N�
i=1

1

λi � −1

, (24)

where λi is the ith eigenvalue of Ru , and λ̄ is the input-
signal power. For a first-order AR process (AR-pole at c,



Filter-Update Equation x̂n+1 = x̂n + µn(dn − uT
n x̂n)

Method Approximations Equations (p′n = ηpn)

opt
SKF

µn = `n

`n+sn

1

‖un‖2

pn+1 = pn − 1

N
µn`n

EVA
SKF

ηn = `n

‖un‖2pn

∼= η µn =
p′

n

p′

n
‖un‖2+sn

p′n+1 = � 1 − η‖un‖2µn

N � p′n
MB
NLMS

`n → ¯̀
n µn =

Nλ̄np′

n

r̄n

1

‖un‖2

ηn = `n

Nλ̄npn

∼= η p′n+1 = � 1 − ηλ̄nµn � p′n
TVA
SKF

(see MB NLMS) µn =
p′

n

r̄n

‖un‖
2 ∼= Nλ̄n p′n+1 = � 1 − ηλ̄nµn � p′n

Table 1: Summary of the proposed step-size controls

|c| < 1), (24) is given by [1, 2]

η =
1 − c2

1 + c2(N − 2)/N

N large
=

1 − c2

1 + c2
. (25)

Figure 2 shows the system distances ‖x̃n‖
2 of the op-

timum 128-tap Kalman filter (opt KF), the optimum scalar-
ized Kalman filter (opt SKF), its three approximations (EVA
SKF, MB NLMS, TVA SKF), and the step-size control for
uncorrelated input signals (UIS SSC) [3]. The measurement
noise is white with a variance of -10 dB, and the input sig-
nal is a first-order AR process (AR-pole at 0.9) with unit
power. Note that the performances of the three approxima-
tions almost reach that of the opt SKF, whereas the UIS
SSC shows a rather poor convergence.

5. CONCLUSIONS

We introduced three different simple step-size controls ex-
plicitly considering correlated input signals using a so-called
fading factor η. It is analytically shown that η ≤ 1 in the
mean. Moreover, it is verified by means of simulations that
η can be approximated by the analytically computable ηKF

of the opt KF, which is only dependent on the input-signal
statistics. For a first-order AR input process the nearly
optimal performance of the proposed step-size controls has
been demonstrated.

A. RANGE DETERMINATION OF THE
FADING FACTOR

In this appendix we prove that the fading factor is (in the
mean) a value, which is smaller than (or equal to) one.
Equality holds only in the case of an uncorrelated input
signal.
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Figure 1: Monitored fading factor of the opt SKF.
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Figure 2: Comparison of system distances.

We rewrite the temporally averaged fading factor of the
MB NLMS in Table 1 as

ηn =
¯̀
n

Nλ̄pn

=
tr (Ru Pn)

λ̄tr (Pn)
, (26)

where we have assumed a stationary input-signal, hence
Ru n = Ru . The temporal (short-term) average of the Pn-
update equation (8) is given by

Pn+1 = Pn − µn (Ru Pn + PnRu ) +

+ µ2
nRu (tr (Ru Pn) + sn) . (27)

According to [4] the recursion (27) describes the behavior of
(8) reasonably well for small step sizes. Since µn is approx-
imately proportional to the number of filter coefficients, i.e.
µn ∝ 1/N , this assumption is truly justified for high-order
FIR filters.

Next, we normalize Ru by the input-signal power λ̄ and
use the following unitary similarity transformation:

Λ = TT 1

λ̄
Ru T . (28)



The diagonal matrix Λ contains the N eigenvalues λ′
i of

Ru /λ̄, such that tr (Λ) = � N

i=1
λ′

i = N holds. The trans-

formation matrix T satisfies TT T = I. We also apply T to
Pn to obtain

Ψn = TT PnT , (29)

where, in contrast to Λ, Ψn is not diagonal in general.
Making use of (29) in the update equation (27) leads to the
following recursion:

Ψn+1 = � I − 2λ̄µnΛ � Ψn + λ̄µ2
nΛ (tr (ΛΨn) + sn) . (30)

Due to our assumption of a sufficiently small step size, we
will neglect higher-order terms of µn, such that (30) can be
approximated as:

Ψn
∼=

n�
j=0

� I − 2λ̄µjΛ � Ψ0
∼=

�
I − 2λ̄

n�
j=0

µjΛ � Ψ0 . (31)

Using (28), (29), and (31), the numerator of the fading
factor (26) evaluates to:

tr (Ru Pn) = λ̄tr � TΛTTTΨnTT �
= λ̄tr (ΛΨn)

∼= λ̄tr

� �
Λ − 2λ̄

n�
j=0

µjΛΛ � Ψ0 �
∼= λ̄ψ0N

�
1 − 2λ̄

n�
j=0

µj
1

N
tr (ΛΛ) � . (32)

In the last line of (32), the initial matrix Ψ0 was simplified
to ψ0I, because we want to focus on the most common
case, where P0 (and consequently also Ψ0) is initialized as
a scaled identity matrix. Similarly, the denominator of the
fading factor (26) results in:

λ̄tr (Pn) ∼= λ̄tr

� �
I − 2λ̄

n�
j=0

µjΛ � Ψ0 �
∼= λ̄ψ0N

�
1 − 2λ̄

n�
j=0

µj � . (33)

A comparison between (32) and (33) reveals that the
presence of the term tr (ΛΛ) /N distinguishes the numera-
tor from the denominator. We now have to show that this
term is greater than (or equal to) one. Note that

tr (ΛΛ) = tr � 1

λ̄
Ru

1

λ̄
Ru � =

N�
i=1

ri
T ri , (34)

where ri is the ith column vector of Ru /λ̄. Because of the
normalization by λ̄, the ith element of ri is equal to one,
such that the norm of ri is greater than (or equal to) one,
i.e. ri

T ri = 1 + ε2i . This immediately allows to deduce that
tr (ΛΛ) /N is greater than (or equal to) one, i.e.

tr (ΛΛ)

N
=

1

N

N�
i=1

ri
T ri = 1 +

1

N

N�
i=1

ε2i ≥ 1 . (35)

As a consequence, the numerator (32) of the fading fac-
tor is (in the mean) smaller than (or equal to) its denomi-
nator (33), such that

Et {ηn} ≤ 1 (36)

must hold.

B. VIRTUAL FADING FACTOR OF THE
OPTIMUM KALMAN FILTER

For a time-invariant unknown system, the covariance ma-
trix of the optimum (superscript “KF”) Kalman filter prop-
agates as

PKF
n+1 = PKF

n −
1

rKF
n

PKF
n unuT

nPKF
n , (37)

where rKF
n = uT

nPKF
n un +sn is the ensemble innovation vari-

ance. Using the matrix-inversion lemma, the following re-
lationship between the covariance matrix and the empirical

autocorrelation matrix R̄u n = (1/n) � n

i=1
unuT

n of the in-
put signal can be established:

PKF
n =

n+ 1

sn

R̄−1
u n = τnR̄−1

u n . (38)

The virtual fading factor of the opt KF thus evaluates to

ηKF
n =

tr � R̄u nPKF
n �

λ̄ntr (PKF
n )

=
τntr (I)

τnλ̄ntr � R̄−1
u n � =

N/λ̄n

tr � R̄−1
u n � . (39)

Considering that limn→∞ R̄u n = Ru the steady-state fad-
ing factor is thus given by

ηKF = lim
n→∞

N/λ̄n

tr � R̄−1
u n � =

�
λ̄

N

N�
i=1

1

λi � −1

, (40)

where λi is the ith eigenvalue of Ru . The reciprocal of ηKF,
i.e. β = 1/ηKF, also appears in a slightly different context
in [1], where β is referred to as the “correlation amplification
factor.”
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