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ABSTRACT

In this paper, we study the performance limits of a
standard GMM speaker identi�cation (SI) system in
\adverse conditions" context using several real noises.
Adaptive noise cancellation represents one such poten-
tially e�ective technique and refers to a class of adap-
tive enhancement algorithms based on the availability
of a primary input source and a secondary reference
source. It will be shown that with the use of an adap-
tive noise cancelling called Double Fast Recursive Least
Squares, the SI performance can approach the optimal
performance system. Experiments are done on Spidre
corpus corrupted by di�erent type of noises. The per-
formance of the SI is improved by more than 35%.

1. INTRODUCTION

It is useful to compare from an experimental point of
view di�erent automatic speaker recognizers in order
to choose the one which is the most appropriate to
a speci�c application. The best information should
be obtained in carrying out experiments in real condi-
tions for each recognizer. Unfortunately, this method is
not realistic in terms of time, money, and experimen-
tal constraints. The use of speech databases aims at
overcoming these di�culties, but it remains unrealis-
tic to record one speech database for the evaluation of
speech recognizers for one particular application. That
is the reason why transformations of speech databases
are investigated. This approach is supposed to de�ne
what transformation is to be applied to a "reference
database" (Swithcboard, Spidre,...) in order to sim-
ulate new conditions. Noisy environments are repre-
sentative of a large number of recognition applications,
and it is necessary to have a noise database. Under
the hypothesis of additive noise, noisy speech can be
obtained by addition of clean speech and noise. But
if one wants to be more accurate in simulating noisy
speech, the Lombard e�ect must be taken into account.
Speakers modify their speech production in presence of
background noise. In this paper, we are interested in
testing the limit of a GMM based speaker identi�ca-

tion for di�erent types of noise. The availability of a
primary input source and a secondary reference source
is considerated. The coupling systems is modelized as
a linear time-invariant Finite Impulse Response (FIR)
�lters and a recursive-based adaptive �lter solution to
enhance the noisy speech is used. The optimum �lter
weight adaptation is based on a Double Fast Recur-
sive Least Squares (DFRLS) algorithm. An acousti-
cal comparative study with other adaptive algorithms
shows the superiority of the DFRLS in terms of conver-
gence, global and segmental SNR, informal quality and
intelligibility tests [5]. In this paper it will be shown
that with the use of an adaptive noise cancelling based
on Double Fast Recursive Least Squares algorithm, the
SI performance can approach the optimal performance
system.

The rest of the paper is organized as follow: sec-
tion 2 gives an overview of a GMM based SI system.
Section 3 describes the techniques used for enhance-
ment of signals degraded by additive noise. Corpus
description and all the experimental framework are de-
scribed in section 4. Conclusion and future experiments
are addressed in section 5.

2. GAUSSIAN MIXTURE MODELS: A

REVIEW

In the Gaussian Mixture Model (GMM) [6], the distri-
bution of the parametrization speech vector of a speaker
is modelized by a weighted sum of Gaussian densities:
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The model parameters � = fpi;
!

� i;�ig are estimated
by an EM algorithm [3]. Typically, Gaussian Mixture
Models (GMM) is an one state Hidden Markov Models
(HMM). Having only one state instead of the standard
three state phone-based HMM presents the advantage
of requiring less training data.

3. ADAPTIVE NOISE CANCELLING

Several techniques exist for enhancement of signals de-
graded by additive noise. Adaptive noise cancellation
represents one such potentially e�ective technique and
refers to a class of adaptive enhancement algorithms
based on the availability of a primary input source and
a secondary reference source. The primary input source
is assumed to contain speech plus additive noise.

The basic scheme of adaptive noise canceller given
in [9] uses an adaptive �lter based on the LMS algo-
rithm for estimating the additive noise by �ltering the
reference source signal. However, the problem with this
approach is that it is di�cult to obtain a highly cor-
related noise in the primary input with the reference
source signal without simultaneously obtaining a cor-
related speech signal. Crosstalk is consequentialy in-
duced in the reference source signal by a closer place-
ment of two microphones and the standard adaptive
noise canceller provides verry little bene�t.

The problem is the design of a structure for joint
process estimation that will eliminate noise in the pres-
ence of crosstalk. Let us consider the system modeled
by the diagram represented in Figure 1. The purpose
is to recover the free noise speech signal s(n) from the
two available observations p1(n) and p2(n) in the pres-
ence of the noise signal b(n).
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Figure 1: Signal model.

To recover the speech signal we use the feedback
implementation of a noise canceller represented in Fig-
ure 2. We only suppose that the speech signal and the
noise are statistically independents and we consider the
coupling systems being FIR �lters. W1(z) and W2(z)
are two adaptive �lters. Each one has as input the out-
put error signal of the other �lter.

)(1 np

)(2 np

)(1 ns

)(2 ns

)(2 zW

)(1 zW

Figure 2: Feedback implementation of the noise can-
celler.

The optimum value, in the Wiener sense, of the tap-
weight Wi(z), i = 1; 2, is obtained by minimizing the
mean squares errors. In the case where speech signal
and the noise are statistically independents the Wiener-
Hopf equations provide multiple solutions. Among all
these solutions we can �nd the desired solutionWi(z) =
Hi(z); i = 1; 2. In this case it is easy to verify that
s1(n) = s(n) and s2(n) = b(n) and it is possible to
recover the signals that would have been measured at
each microphone in the absence of the other source sig-
nal.

These desired solutions can be reached using a weight
adaptive �lters updating based on the LMS or RLS
algorithm. We propose to use the Fast RLS (FRLS)
algorithm for the following reasons. RLS algorithm
has a rate of convergence typically an order of mag-
nitude faster than the LMS algorithm. Among the ex-
isting versions of the FRLS algorithm which have ap-
preciably lower computational complexity than RLS,
we have opted for the numerically stabilized [2] version
well adapted to non-stationary input signal like speech.
On the other hand, the behaviour of these algorithms
for real time applications and DSP implementations
has been mastered [1]. This algorithm named Double
Fast Recursive Least Squares (DFRLS) [5] can also be
used for a subclass of signal separations where the di-
rect link must be stronger than the interference link in
the both channels.

4. EXPERIMENTS

4.1. Corpus Description

The Spidre corpus used consists of eighty (80) speak-
ers; but only the 45 target speakers have been used.
The corpus used consists of four conversation halves
each from 45 claimant speakers (27 males and 18 fe-
males). The four conversations from each speaker orig-
inate from three di�erent handsets (called mismatch
condition) with two conversations from the same phone
number (match condition).



4.2. Noisy and Enhanced Speech

The speech signal and the noise have been separately
recorded. Four types of noise from NOISEX corpus are
considerated: white noise, pink noise, voice babble and
factory noise. The white and pink noise were acquired
by sampling high-quality analog Wandel&Goltermann
noise generator. The voice babble and the factory noise
was acquired by recording samples from 1/2" B&K con-
densor microphone onto digital audio tape (DAT). The
source of the babble voice is 100 people speaking in a
canteen. The room radius is over two meters; there-
fore, individual voices are slightly audible. The sound
level during the recording process was 88 dBA. The
factory noise was recorded near plate-cutting and elec-
trical welding equipment. The noises have been arti�-
cially added to the noise-free speech, so that one would
master the SNR input, to obtain the noisy speech ac-
cording Figure 1. The coupling systems are ten taps
two FIR �lters. One considers the eventual delay be-
tween the two observation signals taken into account
by one of the FIR �lters. The noisy signals used in SI
are the signals p1(n).

The enhanced speech signals, are obtained using a
recursive-based adaptive �lter solution Figure 2. The
optimum �lter weight adaptation is based on a Dou-
ble Fast Recursive Least Squares (DFRLS) algorithm.
An acoustical comparative study between the Normal-
ized LMS, other algorithms and the DFRLS algorithms
shows the superiority of the noise canceller DFRLS
based algorithm in terms of convergence, global and
segmental SNR, informal quality and intelligibility tests
[5]. Furthermore, the structure based on the coupling
FIR �lters permits the DFRLS algorithm to be also
used as a signal separators or a signal deconvolvers
rather than only a simple noise canceller. However,
during high energy regions, the behaviour of the Nor-
malized LMS is close to the DFRLS. The reason is that
noise is masked by the high energy speech regions, and
hence does not require complex treatment. The en-
hanced signals used in SI are the signals s1(n). Fig-
ure 3 shows an example of a typical signal extracted
from Spidre, and the corresponding noisy and enhanced
signals, in the case of a babble noise type.

4.3. Experimental Conditions

The features are a 26-dimensional vectors consisting of
12 cepstral coe�cients, 12 � coe�cients, logarithmic
power and � logarithmic power. Analysis conditions
are listed in Table 1. In all the experiments, we have
used 30 seconds of speech to test the performance of
the SI system.

In table 2, the minimum, maximum, mean and stan-
dard deviation SNR of noisy signals p1(n) are pre-

2 2.2 2.4 2.6 2.8 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4 Original Speech Signal

Time (s)

A
m

pl
itu

de

2 2.2 2.4 2.6 2.8 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4 Noisy Speech Signal

Time (s)

A
m

pl
itu

de

2 2.2 2.4 2.6 2.8 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

4 Enhanced Speech Signal

Time (s)

A
m

pl
itu

de

Figure 3: Signal extracted from Spidre : (a) original
signal, (b) noisy babble signal and (c) enhanced signal.

Parameter Value

Pre-emphasis 1-0.97 z
�1

Window length 25.0 ms

Window shift 10.0 ms

MFCC cepstrum order 24

Cepstral coe�cient liftering 22

Cepstral mean normalization yes

Hamming window yes

Table 1: Analysis conditions used for di�erent experi-
ments

sented. Table 3 shows the corresponding enhanced sig-
nals s1(n), respectively.

Min Max Mean Std
(dB) (dB) (dB) (dB)

White -6.48 15.98 5.43 4.49
Pink -10.79 11.62 1.11 4.50
Babble -7.32 15.22 4.61 4.51
Factory -8.09 14.75 4.10 4.51

Table 2: Input SNR for di�erent noises

Each speaker is modelized with a set of 35 mixtures
(16 as static, 16 as dynamic and 3 as energy). Each
of the mixture components has a diagonal covariance
matrix. All the speech �les (training and test) were
run through a silence detector.



Min Max Mean Std
(dB) (dB) (dB) (dB)

White 4.90 25.60 17.48 4.25
Pink 0.32 23.20 12.83 4.80
Babble 6.22 23.53 16.08 3.67
Factory -3.10 23.19 13.34 4.88

Table 3: Output SNR for di�erent noises

Signal Type Performance
Original 85

Table 4: GMM Based SI performance with Spidre Cor-
pus

4.4. Analysis and Discussion

Table 5 shows the results of the SI task on noisy and
enhanced signals. By using a relative measure

PerfEnhanced � PerfNoisy

PerfOptimal

� 100

we obtain an average improvement of more than 35%.
All the results presented in this paper used a basic
GMM implementation. Therefore no improved or re-
estimated models have been used. Other improvement
can be acheived by using models obtained by some
transformations such as LDA, NLDA, MLLR [7, 8].

5. CONCLUSION AND FUTURE

PROBLEMS

In this paper, we have presented a study of the limits
of a standard GMM speaker identi�cation system in
\adverse conditions" using several real noises. We have
used a Double Fast Recursive Least Squares, an adap-
tive noise cancelling algorithm. The results showed the
e�ciency of the noise canceller used by improving the
SI performance by more than 35%. In our future work,
we will explore other aspects of noise cancelling and
various adaptation and transformation technics.
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