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ABSTRACT

This paper deals with the problem of speech enhance-
ment when a corrupted speech signal with an additive
Gaussian white noise is the only information available
for processing. Kalman �ltering is known as an e�ec-
tive speech enhancement technique, in which speech
signal is usually modeled as autoregressive (AR) pro-
cess and represented in the state-space domain. In the
above context, all the Kalman �lter-based approaches
proposed in the past, operate in two steps: they �rst
estimate the noise and the driving variances and pa-
rameters of the signal model, then estimate the speech
signal. This paper presents an alternative solution that
does not require the explicit estimation of noise and
driving process variances. This deals with a new for-
mulation of the optimal Kalman gain estimation ap-
proach proposed in the control literature by Carew and
Belanger.

1. INTRODUCTION

Speech enhancement using a single microphone system
has become an active research area for audio signal en-
hancement. The aim is to minimize the e�ect of noise
and to improve the performance in voice communica-
tion systems when input signals are corrupted by back-
ground noise.

Various approaches based on the Kalman �lter are
presented in the literature. They usually operate in
two steps: �rst, noise and driving process variances and
speech model parameters are estimated and second, the
speech signal is estimated by using Kalman �ltering. In
fact these approaches di�er only by the choice of the
algorithm used to estimate model parameters and the
choice of the models adopted for the speech signal and
the additive noise.

Paliwal and Basu [1] have used estimates of the
speech signal parameters from clean speech, before be-
ing contaminated by white noise. They then used a
delayed version of Kalman �lter in order to estimate
the speech signal.

Gibson et al. [2] have proposed a method that pro-
vides a sub-optimal solution, which is a simpli�ed ver-
sion of the Estimate-Maximize (EM) algorithm based
on the maximum likelihood argument. However, noise
variance was estimated during the silent period, which
implies the use of Voice Activity Detector (VAD).

Gannot et al. [3] have proposed the use of EM al-
gorithm to iteratively estimate the spectral parameters
of speech and noise parameters. The enhanced speech
signal was obtained as a byproduct of the parameter
estimation algorithm.

Grivel et al. [4] have suggested that the speech
enhancement problem can be stated as a realization is-
sue in the framework of identi�cation. The state-space
model was identi�ed using a subspace non-iterative al-
gorithm based on orthogonal projection.

Lee and Jung [5] have developed a time-domain ap-
proach, with no a priory information, to enhance speech
signals. The autoregressive-hidden �lter model (AR-
HFM) with gain contour was proposed for modeling
the statistical characteristics of the speech signal. The
EM algorithm was used for signal estimation and sys-
tem identi�cation. In the E-step, the signal was esti-
mated using multiple Kalman �lters with Markovian
switching coeÆcient and the probability was computed
using the Viterbi Algorithm (VA). In M-step, the gain
contour and noise parameter were recursively updated
by an adaptive algorithm.

Gabrea and O'Shaughnessy [6] have proposed esti-
mating the noise and driving process variances using
the property of the innovation sequence, obtained after
a preliminary Kalman �ltering with an initial gain.

In this paper the signal is modeled as an AR pro-
cess and a Kalman �lter based-method is proposed
by reformulating and adapting the approach proposed
for control applications by Carew and Belanger [7].
This method avoids the explicit estimation of noise
and driving process variances by estimating the opti-
mal Kalman gain. After a preliminary Kalman �ltering
with an initial sub-optimal gain, an iterative procedure
is derived to estimate the optimal Kalman gain using
the property of the innovation sequence.



The performance of this algorithm is compared to
the one of alternative speech enhancement algorithms
based on the Kalman �ltering. A distinct advantage of
the proposed algorithm is that a VAD is not required.
Another advantage of this algorithm compared to the
one, similar in structure, presented in [8], is the supe-
riority in terms of computational load. A �ltering step
is not required in the optimal Kalman gain estimation.

This paper is organized as follows. In Section II we
present the speech enhancement approach based on the
Kal-man �lter algorithm. Section III is concerned with
the estimation of AR parameters and optimal Kalman
gain. Simulation results are the subject of Section IV.

2. NOISY SPEECH MODEL AND KALMAN

FILTERING

The speech signal s(n) is modeled as a pth-order order
AR process:

s(n) =

pX
i=1

ais(n� i) + u(n) (1)

y(n) = s(n) + v(n) (2)

where s(n) is the nth sample of the speech signal, y(n)
is the nth sample of the observation, and ai is the ith
AR parameter.

This system can be represented by the following
state-space model:

x(n+ 1) = Fx(n) +Gu(n+ 1) (3)

y(n) = Hx(n) + v(n) (4)

where:

1. the sequences u(n) and v(n) are uncorrelated
Gaussian white noise sequences with zero means
and the variances �2u and �2v

2. x(n) is the p � 1 state vector

x(n) = [s(n� p+ 1) � � � s(n)]T (5)

3. F is the p � p transition matrix

F =

2
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0 1 0 � � � 0
0 0 1 � � � 0
...

...
...

. . .
...

0 0 0 � � � 1
ap ap�1 ap�2 � � � a1

3
777775

(6)

4. G and H are, respectively, the p�1 input vector
and the 1 � p observation row vector which is
de�ned as follows

H =GT =
�
0 0 � � � 0 1

�
(7)

The standard Kalman �lter [9] [10] provides the up-
dating state-vector estimator equations:

e(n) = y(n)�Hx̂(n=n� 1) (8)

x̂(n=n) = x̂(n=n� 1) +K(n)e(n) (9)

x̂(n+ 1=n) = Fx̂(n=n) (10)

where x̂(n=n�1) is the minimum mean-square estimate
of the state vector x(n) given the past observations
y(1), : : :, y(n � 1), x̂(n=n) is the �ltered estimate of
the state vector x(n), e(n) is the innovation sequence
and K(n) is the Kalman gain. The estimated speech
signal can be retrieved from the state-vector estimator:

ŝ(n) = Hx̂(n=n) (11)

The noise variances �2u and �2v are needed to compute
the Kalman gainK(n). However, the transition matrix
and the Kalman gain are unknown and hence must be
estimated. The parameter estimation (the transition
matrix and the optimal Kalman gain) is presented in
the next section.

3. PARAMETER ESTIMATION

The estimation of the transition matrix, which contains
the AR speech model parameters, was made using the
modi�ed Yule-Walker equations. The estimation of the
optimal Kalman gain is derived using the property of
the innovation sequence, obtained after a preliminary
Kalman �ltering with an initial gain.

3.1. Estimation of the Transition Matrix

In our approach, getting F requires the AR parameter
estimation. This issue being outside the scope of the
present paper we propose to estimate the AR param-
eters from modi�ed Yule-Walker equations [11], even
if this approach may sometimes lead to unsatisfactory
performances, especially for wideband signals [12]:
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where ryy(k) = E[y(n)y(n�k)] denotes the observation
autocorrelation function, E[:] denotes the expectation,
[:]y denotes the pseudoinverse operator and l � 0.



3.2. Estimation of the Optimal Kalman Gain

It is known that in the optimal case the innovation
process e(n) is orthogonal to all past observations y(1),
: : :, y(n � 1) and it consists of a sequence of random
variables that are orthogonal to each other. In this case
the autocorrelation of the innovation process ree(k) =
E[e(n)e(n� k)] is zero for k > 0 [13].

Let a sub-optimal Kalman gain K�, x�(n=n � 1)
the estimate of the state vector x(n) given the past
observation y(1), : : :, y(n � 1) and e�(n) = y(n) �
Hx�(n=n � 1) the innovation sequence obtained us-
ing the sub-optimal Kalman gain K�. In this case the
innovation sequence e�(n) is not a white process and
r�ee(k) = E[e�(n)e�(n�k)] is not zero for k > 0. Let de-
�ne the di�erence estimate vector ~x(n=n� 1) obtained
by di�erence between the estimates of x(n) using the
optimal and respectively the sub-optimal Kalman gain
and M(n=n� 1) = E[~x(n=n� 1)~xT (n=n� 1)] the dif-
ference estimate correlation matrix.

In the steady-state K(n) ' K and M(n=n � 1) '
M. Using the estimation transition matrix F̂, the stan-
dard Kalman �lter equations (8)-(10) and the state
space model equations (3)(4), the innovation au-
tocorrelation function r�ee(k) is computed as:

r�ee(k) = H[F̂(I�K�H)]k�1F̂�

� [(I�K�H)MHT + (K�K�)ree(0)]

k > 0 (13)

r�ee(0) = HMHT + ree(0) (14)

Using the equation (13), the optimal steady-state Kalman
gain is obtained as:

K = K�
� (I�K�H)MHT =ree(0)+
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Using the steady-state Riccati equation [9] the di�er-
ence estimate correlation matrix is obtained as:

M = F̂(I�K�H)M(I�K�H)T F̂T

+ ree(0)(K�K�)(K�K�)T (16)

Carew and Belanger [7] have proposed an iterative method
to solve the equations (14)(15)(16) in terms of ree(0),
K and M. Adapting this method in our case, in the
�rst iteration we start withM(0) the initial value ofM,
compute the �rst estimates of innovation autocorrela-

tion r
(0)
ee (0) using (14) and compute the �rst estimate

of the optimal Kalman gain K(0) using (15). After i
iterations the estimates of ree(0), K and M are:

r(i)ee (0) = r�ee(0)�HM
(0)HT (17)

K(i) = K�
� (I�K�H)MHT =ree(0) +

+
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r�ee(1)
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r�ee(p)

3
7775 =ree(0) (18)

M(i+1) = F̂(I�K�H)M(i)(I�K�H)T F̂T +

+ r(i)ee (0)(K�K�)(K�K�)T (19)

4. SIMULATION RESULTS

The proposed method was �rst tested using an AR sig-
nal that o�ers a good approximation of the spectral
envelope of a speech signal and an additive Gaussian
white noise. In the experiment, 256 samples of the AR
signal were generated. In Table 1 we present the mean
value, the standard deviation and the maximum value
based on 1000 simulations.

Output SNR
Input SNR Mean Std Max

(dB) (dB) (dB) (dB)

-5.00 2.73 0.58 4.42
0.00 5.63 0.31 7.23
5.00 9.70 0.23 11.21
10.00 12.53 0.17 13.63
15.00 16.96 0.08 17.23

Table 1: Output SNR for an Input AR Signal

plus White Noise

The approach was also tested using a speech signal
and an additive Gaussian white noise. The speech sig-
nals are sentences from the TIMIT database. Table 2
o�ers a comparison with others approaches, by show-
ing averaged SNR gain based on 10 speech signals and
10 noise simulations for each speech signal.

Figure 1 represents, respectively, the time signal
of the noise-free speech, the noisy speech and the en-
hanced speech. For this example, the SNR of the noisy
speech signal is 0 dB.

Compared to the method similar in structure previ-
ously proposed by the author in [8] and to the Gibson's
algorithm [2], the proposed method provides increases
in SNR, as well as improved speech quality and intel-
ligibility for input SNR between -5 and 15 dB. Gib-



Output SNR
Input SNR [2] [8] proposed

(dB) (dB) (dB) (dB)

-5.00 2.46 -2.52 2.48
0.00 4.57 2.61 4.72
5.00 7.96 6.83 8.29
10.00 11.92 10.95 12.31
15.00 16.00 15.08 16.47

Table 2: Output SNR for an Input Speech Sig-

nal plus White Noise

son's algorithm needs two or three iterations to get the
highest SNR gain. It uses a voice activity detector to
determine silence periods. The above factors lead to
computational requirements higher than those corre-
sponding to the proposed approach.
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Figure 1: Example of speech signal enhancement (In-
put SNR = 0 dB)
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