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ABSTRACT

For high quality acoustic echo cancellation long echoes have
to be suppressed. Classical LMS-based adaptive filters are
not attractive here as they are suboptimal from a compu-
tational point of view. Multirate adaptive schemes such
as the partitioned block frequency-domain adaptive filter
(PBFDAF) are a good alternative and are widely used in
commercial echo cancellers nowadays.

In this paper the PBFDRAP adaptive filter is analyzed,
which combines frequency—domain adaptive filtering with
so—called “row action projection”. Fast versions of the al-
gorithm can be derived and it will be shown that the PBF-
DRAP outperforms the PBFDAF in a realistic echo cancel-
lation setup.

1. INTRODUCTION

For high quality acoustic echo cancellation long echoes have
to be suppressed. Acoustic echo paths are characterized by
FIR filters with lengths up to 250 ms. Filters clocked at a
rate of, say, 10 kHz then require several thousands of filter
taps to be identified.

Of all existing adaptive algorithms the Least Mean Square
algorithm may be best known. LMS-based algorithms have
a complexity that is linear in the filter length, but they suf-
fer from a rather slow convergence for signals with a colored
spectrum such as speech.

More efficient implementations of the LMS algorithm are
available, often relying on frequency—domain techniques [8].
The so—called Partitioned Block Frequency—Domain Adap-
tive Filter (PBFDAF) [7] is used in commercial echo can-
cellers nowadays.

In this paper the PBFDRAP will be discussed, which is a
combination of the PBFDAF algorithm and so—called “row
action projection” (RAP). A good reference on Row Action
Projection is [5]. Fast versions of the PBFDRAP algorithm
can be derived and it will be shown that the PBFDRAP
outperforms the PBFDAF in a realistic echo cancellation
setup.
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2. PARTITIONED BLOCK
FREQUENCY-DOMAIN RAP

As a cheaper alternative to the LMS algorithm, the frequen-
cy—domain adaptive filter (FDAF') was introduced [8]. The
FDAF is a block based adaptive filter, which is a direct
translation of Block-LMS to the frequency domain. It ap-
pears that the FDAF algorithm is computationally attrac-
tive only if the block length has the same order of magnitude
as the adaptive filter length N. In practice however, this
leads to unacceptable input/output delays.

By splitting the N-taps fullband adaptive filter @(™[k] in
equal parts and transforming to the frequency domain, a
mixed time/frequency—domain adaptive filter can be ob-
tained, called the Partitioned Block Frequency—Domain A-
daptive Filter (PBFDAF) [7]. The parameters of the PB-
FDAF can be chosen such that a cheap adaptive filter with
acceptable processing delay is obtained. The PBFDAF is
widely used in commercial echo cancellers nowadays.
Stepping several times through the filter and weight updat-
ing part of the PBFDAF algorithm leads to an improved
error and weight update. This extension of the PBFDAF
algorithm which iterates several times on the same block of
data will be called the partitioned block frequency-domain
RAP adaptive filter (PBFDRAP). RAP stands for Row Ac-
tion Projection and was initially proposed as an improve-
ment to the LMS algorithm. A good reference on Row
Action Projection is [5].

The update equations defining the overlap—save PBFDRAP
are :
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in which 0 < p € Z < & — 1 (assuming that & € Z), F
is the M x M DFT matrix and n is the block index. Each



Figure 1: Echo cancellation setup

time Eq. 1-5 are performed L new far-end samples x are
taken in, and L new filter output samples e are produced
(see figure 1). Vector d,, contains the L most recent values
of near—end signal d. Vectors wy*"’, y™™) and e™") are
respectively the adaptive filter weights, the reconstructed
echo and the error output at iteration step r. The PBF-

DRAP reduces to the PBFDAF if R = 1. Further,
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™[] is the equivalent N—taps fullband adaptive filter for
block n. L is called the block length, and hence the corre-
sponding input/output delay of the PBFDRAP is 2L — 1.
Further, A = diag{u{™} contains subband dependent step-
sizesand M =P+ L—1+4o0,witho€ Z > 0.

If P is divisible by L (which is typically the case in prac-
tice), X,(J") = X(()n_p P/L) and hence equation 1 requires only
1 DFT operation, namely the one that corresponds to p = 0.
The other Xg,") can be recovered from previous iterations.
In most practical applications P = L, 0 = 1 and M is a
power of 2.

There exist two variants of this algorithm, called the con-
strained and the unconstrained PBFDRAP. Matrix G in
equation 5 defines the type of updating : for the uncon-
strained PBFDRAP, G = I,, for the constrained PBF-
DRAP
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The unconstrained updating requires 3 DFTs per iteration,
provided P is divisible by L, whereas the constrained PBF-
DRAP is more expensive, having an extra % DFTs to
compute. The latter on the other hand has better conver-
gence properties.

By introducing stepsize normalization the convergence can
be improved. As the PBFDRAP takes on the form of an
oversampled subband adaptive filter [3], applying different
stepsizes to each subband, depending on the subband en-
ergy, enhances the convergence.

An ambiguity can occur with the unconstrained PBFDRAP
algorithm if ¢ > 0 : it is not guaranteed that the filter
weights maintain the initial format set in Eq. 8. A ran-
dom value € can appear in Eq. 8 as an extra (P + 1)-th
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element of fv,(,") for instance, as long as it is compensated
for at the first element of ﬁ;;ﬁ_l [3]- This ambiguity can be
easily compensated for by slightly changing Eq. 2 and 3,
ie. computing e™") based on L + o instead of L signal
samples :
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The other equations remain unchanged and the additional
algorithmic cost is almost negligible.

The PBFDRAP algorithm iterates R times on the same
block of data (XI(," ,dr). Hence, an improved weight up-
date wz()"’RH) and a smaller a—posteriori error output ™%
are obtained. If the number of iteration steps R is increased
the algorithm further reduces the a—posteriori error by ex-
ploiting the signal characteristics, i.e. adapting the filter co-
efficients towards a solution that minimizes e™*) for data
block (Xl(,”) ,dr), rather than trying to improve the model
of the unknown system w as such. Therefore, a small a—
posteriori error e™%) does not necessarily imply a good
echo path modelling. Hence, the quality of the model ap-
proximation should be evaluated by plotting the norm be-
tween the unknown system w and the model &™) or, if w is
not known, by looking at the time evolution of the so—called
a—priori error e(™1.

3. ON ITERATING THE PBFDRAP

It was shown [6] that the limiting result of reiterating the
LMS algorithm leads to the normalized LMS algorithm.
The same sort of derivation can be done for the PBFDRAP
algorithm to check what happens if the number of iteration
steps R goes to infinity.

3.1. Unnormalized and globally normalized uncon-
strained PBFDRAP

For the unnormalized unconstrained PBFDRAP, G = I
and A is defined as pulIs, with p a positive constant. More
generally, A = p, Iy, with p, a block dependent stepsize.
For instance, if"
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the algorithm performs a global normalization, leading to
better convergence if signals with a high dynamic range
(such as speech) are involved.

In [2] it is proven that if the number of iteration steps R goes
to infinity, both the unnormalized and globally normalized
unconstrained PBFDRAP approach a normalized version
of the unconstrained PBFDAF that is based on projected
subband energies and adapted with maximum stepsize p, =
1, ie.
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1X,(,n)(m) is the m—th diagonal element of matrix Xg,").



in which P is a projection matrix, depending on the far-end
signal z [2].

3.2. Subband—mnormalized unconstrained PBFDRAP

The PBFDRAP may be considered as a subband adaptive
system [3]. The convergence can be optimized by applying
a different stepsize to each of the subband adaptive filters.
Therefore, matrix A is typically chosen as follows :
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In this way in each subband the adaptation stepsize p is
divided by the subband energy. It is proven (see [2]) that the
subband—normalized unconstrained PBFDRAP converges
to the subband-normalized unconstrained PBFDAF with
p =1 increasing the number of iteration steps R has the
same effect as applying a larger stepsize p.

3.3. Unnormalized and globally normalized constrai-

ned PBFDRAP

In [1] the relation between two adaptive filtering techniques
was examined : iterated Block-LMS and the Partial Rank
Algorithm (PRA). The PRA is a block version of the Affine
Projection Algorithm (APA) [5] and can be interpreted as a
block—normalized version of the Block-LMS algorithm [1].
It was shown that iterated Block-LMS approaches PRA
with maximum stepsize p = 1, if the number of iteration
steps goes to infinity [1]. As the unnormalized constrained
PBFDRAP is an exact representation of iterated Block—
LMS in the frequency domain, it will also approach the
PRA with maximum stepsize, if R goes to infinity. In [2] it
was verified more formally that the unnormalized and also
the globally normalized constrained PBFDRAP algorithm
approach the PRA.

3.4. Subband-—normalized constrained PBFDRAP

The same sort of derivation can be made for the subband-
normalized constrained PBFDRAP to check what happens
if R goes to infinity. Stability problems arise however in
this case as the algorithm may diverge for large values of
R. Starting from the weight update equation (Eq. 5) the
limit for R — oo can be computed, but for some data sets
it appears that the algorithm will convergence to an unsta-
ble filter [2]. However, this does not automatically imply
divergence of the algorithm for finite R, but indicates that
iterating this algorithm is expected to invoke stability prob-
lems. It seems that also in this case increasing the number
of iteration steps R has the same effect as applying a larger
stepsize p (cf section 3.2).

4. FAST PBFDRAP

At first sight iterating R times on the same block of data
is rather expensive, the implementation cost being almost
R times higher. Fast implementations were derived for the
PBFDRAP algorithm [4] making a high number of iteration
steps more attractive. Some of the fast implementations are
specifically tuned towards the unconstrained PBFDRAP or
are suitable for constrained updating only. Other versions
are applicable to both update schemes.

For example, the results of a cost comparison between the

standard unnormalized unconstrained PBFDRAP (Eq. 1-
5) and a fast version of the unconstrained PBFDRAP are
shown in figure 2. Both the standard and the fast imple-
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Figure 2: Cost standard unnormalized unconstrained PBF-
DRAP (Eq. 1-5) vs. fast unnormalized unconstrained
PBFDRAP for a realistic parameter setting (M = 256,
P=L=128, N =1024)

mentation give the same output, the fast algorithm being
significantly cheaper. Iterating twice with the standard ap-
proach for instance is as expensive as iterating 4 times with
the fast algorithm.

5. SIMULATION EXAMPLES

A lowpass noise signal having the spectral characteristics
of speech was fed into a loudspeaker and recorded with a
microphone in a controlled stationary laboratory environ-
ment. No near—end signal s was added on top (see figure
1).

In a first experiment the unknown acoustic path was esti-
mated using the globally normalized PBFDRAP (cf. Eq.
12), varying the type of updating (unconstrained, constrai-
ned) and the number of iteration steps R. The other pa-
rameters were kept constant and were chosen as follows :
L=P =128 M = 256, N = 1024. Eq. 10 and 11 were
employed to compensate for the ambiguity which can occur
(see section 2). For each of the algorithms here presented
the optimal stepsize was computed which maximizes the
convergence speed. This stepsize was divided by 10 and
applied to the adaptive filter, in order to simulate the per-
formance of the algorithms in the presence of double-talk.
During double-talk the local signal source s is active (see
figure 1). If double—talk is detected the adaptation constant
4+ must be set immediately to zero in order to freeze the co-
efficients of the adaptive filter. If adaptation is not switched
off the filter coefficients easily drift away from their Wiener
solution, leading to a bad model and a larger error output
e. If the adaptation constant p is kept significantly smaller
than the theoretical optimum large deviations of the filter
coefficients can be avoided. The time evolution of the a-
priori error output e for each of the adaptive filters is shown
in figure 3.

In a second experiment the unknown acoustic path was
estimated using the subband-normalized PBFDRAP (cf.
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Figure 3: The globally normalized PBFDRAP was used
to estimate an unknown stationary acoustic path, varying
the type of updating (unconstrained, constrained) and the
number of iteration steps R. The following parameters were
applied : L = P = 128, M = 256, N = 1024. The time
evolution of the a—priori error output e is shown for each of
the adaptive filters.

Eq. 14), varying the type of updating (unconstrained, con-
strained) and the number of iterations R. Also in this ex-
periment L = P = 128, M = 256, N = 1024. The am-
biguity was compensated for and the adaptation stepsizes
were kept an order of magnitude below the optimum. The
time evolution of the a—priori error output e for each of the
adaptive filters is shown in figure 4.
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Figure 4: The subband-normalized PBFDRAP was used
to estimate an unknown stationary acoustic path, varying
the type of updating (unconstrained, constrained) and the
number of iteration steps R. The following parameters were
applied : L = P = 128, M = 256, N = 1024. The time
evolution of the a—priori error output e is shown for each of
the adaptive filters.

It is clear that by increasing the number of iteration steps

R the performance of the PBFDAF can be improved. As
the input signal is colored, the subband-normalized PBF-
DRAP convergences faster than the globally normalized
PBFDRAP. Although stability is not guaranteed for R —
00, the subband-normalized constrained PBFDRAP offers
the best performance for real signals and realistic values
of R. Finally, if the a—posteriori errors are plotted instead
of the a—priori errors extra echo enhancement can be ob-
tained. However, during double-talk a—priori errors should
be passed to the output to avoid near—end signal cancella-
tion.

6. CONCLUSIONS

In this paper the PBFDRAP was discussed, an adaptive
filtering algorithm which combines row action projection
and partitioned block frequency—domain adaptive filtering.
For some parameter settings the PBFDRAP algorithm ap-
proaches well-known adaptive filtering algorithms such as
the PRA. Fast versions of the algorithm can be derived,
leading to a reduced algorithmic complexity. Based on sim-
ulation results it was shown that in a realistic signal en-
hancement setup such as acoustic echo cancellation, the
PBFDRAP can be employed to obtain improved system
estimates outperforming the standard partitioned block fre-
quency—domain adaptive filter.
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