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ABSTRACT

The paper presents a reduced-complexity implementa-
tion for the generalised subband decomposition LMS
(GSD-LMS) algorithm based on selective partial up-
dating. The major advantage of the GSD-LMS over
the transform-domain LMS (TD-LMS) algorithm is the
reduced transform size and the smaller number of di-
visions for power normalisation. The proposed algo-
rithm capitalizes on this by further reducing the num-
ber of multiplications in the update term. The only
overhead introduced is comparison operations for sort-
ing which can be implemented cheaply. The superior
performance of the selective-partial-update GSD-LMS
compared with sequential block updating is demon-
strated via simulation examples.

1. INTRODUCTION

Generalised subband decomposition (GSD) is a struc-
tural subband decomposition of FIR filters [1]. The re-
sulting structure implements an adaptive FIR filter of
length IV as a parallel connection of L branches where
each branch is composed of a fixed interpolator fol-
lowed by a sparse adaptive FIR filter with at least N/L
nonzero coefficients. The fixed interpolators can be im-
plemented by transforms such as the discrete Fourier
transform (DFT), discrete cosine transform (DCT) and
discrete Hartley transform (DHT), to name but a few.

The LMS algorithm can be used to adapt the GSD
coefficients, which results in a variant of the transform-
domain LMS (TD-LMS) algorithm. For coloured in-
put signals, the TD-LMS algorithm is known to have
a significantly faster convergence speed than the nor-
malised LMS (NLMS) algorithm. This improvement
is achieved by decorrelating (whitening) the input re-
gressor vector to the adaptive filter. Decorrelation is
accompanied by power normalisation to ensure uniform
convergence from any initialisation with the same dis-
tance from the solution vector. In acoustic echo cancel-
lation applications, the adaptive filter usually requires
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a large number of coefficients ranging from 256 to 2048.
The number of adaptive filter coefficients is affected to
a large extent by the acoustic environment where the
echo canceller is to employed. Inside a car, for instance,
an adaptive FIR filter with approximately 200 coeffi-
cients is deemed sufficient. In a videoconference room,
the required number of coefficients (the filter length)
is usually larger. The computational complexity of the
TD-LMS algorithm is proportional to the adaptive fil-
ter length. The root cause of large computational com-
plexity is the number of multiplications that need to be
performed to update the adaptive filter coefficients for
every received data sample. The cost associated with
the orthogonal transform and power normalisation also
plays a significant role.

In this paper, we introduce a selective-partial-update
GSD algorithm for acoustic echo cancellation. The
proposed algorithm permits a tradeoff between perfor-
mance and affordable computational complexity. The
performance of the new reduced-complexity algorithm
is illustrated with computer simulations for synthetic
as well as real speech signals.

2. GENERALISED SUBBAND
DECOMPOSITION

It is desirable to reduce the computational complex-
ity of the TD-LMS algorithm while maintaining a bet-
ter convergence performance than the ordinary NLMS.
One approach to complexity reduction is to use a smaller
size orthogonal transform than what would be required
by the TD-LMS, and apply the transform outputs to
adaptive FIR filters of appropriate length after power
normalisation. The outputs of adaptive FIR filters are
summed to obtain the adaptive filter output. This ap-
proach is called GSD. GSD reduces the complexity
associated with orthogonal transform and the number
of divisions required for power normalisation.
For an adaptive filter of length N with regressor

vector z(k) = [z(k), z(k—1), - ,z(k—N+1)]T and co-
efficient vector w(k) = [wo(k),wy(k), - ,wy_1(k)]",



the TD-LMS algorithm is defined by the recursion [2]
wlk+1) = wik) + pe(WA 20" (k) (1)

where v(k) = Tx(k) is the transformed regressor vec-
tor and
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is the power matrix which is used to normalise the pow-

ers of approximately uncorrelated transform outputs

v(k) = [vo(k),... ,vn_1(k)]". The power matrix can

be estimated online using a sliding exponential window:

of (k) = aci(k —1) + (1 — a)|vi(k) P,

i=0,..., N—1

where 0.95 < a < 1 is the forgetting factor for the
exponential window.

The transform T is a fixed N x N orthogonal matrix
and can be obtained, e.g., from DFT, DCT or DHT.
The computational complexity of the TD-LMS algo-
rithm is NV multiplications for calculation of T' by bank
of TIR filters, 3N multiplications and N divisions for
power normalisation, N multiplications for calculation
of e(k), and N multiplications for calculation of the
update term.

GSD uses an M x M orthogonal transform T where
M < N. The transform outputs are applied to sparse
FIR filters with K nonzero coefficients spaced by L:

K-1
W, (2") = Z wni(k)z" n=0,1,...
=0

For L < M, the relationship between filter parameters
is given by N = (K — 1)L + M. The output of the
adaptive filter is

y(k) = Kf v (k — iL)w;(k)
=0
where w; (k) is the vector of ith coefficients of the filters
Wa(25):
w;(k) = [wo,; (k),wn i(k), ... ,wM_M(k)]T.
The error signal is
e(k) = d(k) —y(k)

where d(k) is the desired filter response. The GSD-
LMS algorithm is given by

w;(k+1) = w;(k) + pe(k) A >v*(k —iL)
i=0,...,K—-1. (2)

The complexity of the GSD-LMS is M multiplica-
tions for calculation of T' by bank of IIR filters, 3M
multiplications and M divisions for power normalisa-
tion, KM multiplications for calculation of e(k), and
K M multiplications for calculation of the update term.

Setting M = N, K = 1 and L = 1 reduces the
GSD-LMS to the TD-LMS algorithm.

3. USING SELECTIVE PARTIAL UPDATES

The computational cost of GSD can be further reduced
by employing selective partial updating [3]. First col-
lect the regressor vectors and coefficient vectors to-
gether and then partition the new vectors to P blocks
of length Q:
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Partition the augmented power matrix in a similar way:

A? G:
G2 = . =

2 2

A KMxKM Gp
To achieve the desired complexity reduction, only
some blocks of w(k) is updated. To select the blocks
to be updated, we solve the following constrained op-

timisation problem:

! i Gi ik' 1) — ik: 2
121%1Pw38c1£1)” (Wi(k+1) = wi(k))l5

subject to vT (k)w(k + 1) = d(k).

This constrained optimisation problem is reminiscent
of the one used in the derivation of the NLMS algo-
rithm, but it has two main differences: (i) minimisa-
tion over coefficient vector blocks rather than the entire
coefficient vector, and (ii) the weighting of coefficient
update by the power matrix. The solution to this op-
timisation problem is obtained by the method of La-
grange multipliers. The cost function to be minimised
is given by

Ji(k) = |Gi(wi(k + 1) — wi(k))[l5
+Ad(E) — vT (k)w(k + 1))



where A is a Lagrange multiplier. Solving

oJi(k) 9Ji(k)
(k) 0 and =5y

=0,

and introducing a small stepsize p to control speed of
convergence yields the recursion

G7?vi(k)

wilk +1) = wilk) + ne(k) ot e o

(5)

The block to be updated is the one with the smallest
squared Euclidean norm update weighted by the power
matrix partition:

o Glvi |’
1= argmln H——2
1<G<P vi (k)G vi(k)

= argmax Vfl(k)Gszuj (k).
1<j<P

e(k)

> (6)

In (5), the normalisation factor is redundant since the
recursion is over approximately white input signals.
Thus, (5) can be further simplified by dropping the
normalisation factor. Incorporating the selection crite-
rion in (6) into the simplified recursion yields

wilk +1) = wi(k) + pe(k)G; v (k),

i = arg max Vf(k:)Gj_Ql/j (k). (7)
1<j<p

The selective-partial-update algorithm in (7) can be
generalised to multiple-block selection [3]:

wry(k+1) = w, (k) + pe(k)G vy, (k) (8)

where Zp = {i : v (k)G *v;(k) is one of the B largest
in v (k)GT?v1(k), -, v (k)GR*vp(k)} is the set of
B blocks to be selected. We will refer to (8) as the
selective-partial-update generalised subband decomposi-
tion LMS (SPU-GSD-LMS) algorithm. The subscript
Ip in, e.g., wz, denotes an augmented vector com-
posed of blocks with indices in Zp, i.e.,
wr, (k) = [w, (k),wi, (k), - wi, (k)]

where 7p = {i1,42,--- ,ip}. Note that setting P =
KM and B = P corresponds to the full-update GSD-
LMS algorithm in (2).

4. SEQUENTIAL BLOCK UPDATES

For comparison purposes, we will consider the sequential-
block GSD-LMS (SB-GSD-LMS) algorithm. While the
SPU-GSD-LMS allows for significant reduction in the
number of multiplications required for calculation of
the update term, it also introduces some overhead for
sorting of the P blocks. A zero overhead alternative
to the SPU-GSD-LMS is the SB-GSD-LMS algorithm
which uses the concept of sequential block updating [4].

Unlike the SPU-GSD-LMS, the SB-GSD-LMS does
not select the blocks to be updated in an “intelligent”
way. It simply updates one block in a sequential man-
ner. The regressor and coefficient vectors are parti-
tioned into P blocks as in (3) and (4). The SB-GSD-
LMS uses the same recursion in (5). The block index
i is changed with the recursion index k in a circular
fashion:

i = (k mod P) + 1.

Thus the selection of the block to be updated requires
no sorting. As we will see in the computer simulations,
the convergence speed of the SB-GSD-LMS is 1/Pth
that of the GSD-LMS. This reduction in convergence
speed is often not tolerable, in particular for large P.
Although the SB-GSD-LMS has zero overhead for block
selection, its convergence speed is inferior to the SPU-
GSD-LMS.

If B # 1 for the SPU-GSD-LMS, the equivalent SB-
GSD-LMS will use P/ B blocks of length BQ (assuming
that the division results in an integer).

5. COMPUTATIONAL COMPLEXITY

The SPU-GSD-LMS algorithm requires M multiplica-
tions for the transform, M divisions and 3M multipli-
cations for power normalisation, KM multiplications
for e(k), and B(KM)/P multiplications for the up-
date term where B/P < 1. The SPU concept reduces
the complexity for the update term by a factor of P/B.
The overhead required for the selection of B blocks is
O(2M log, (K M)+2M) comparisons for P = KM (i.e.,
@ = 1). Here the Sortline algorithm [5] is assumed to
be used for sorting the blocks using a heap of K M num-
bers. Every time a new sample comes in, M elements of
the heap are replaced by new transformed and power
normalised M numbers. This block-shift property of
the heap can be exploited by the Sortline algorithm.

6. SIMULATIONS

We demonstrate the SPU-GSD-LMS in an acoustic echo
cancellation application. The loudspeaker signal z(k)
is a stationary USASI signal with a speech-like spec-
trum, and the acoustic echo path used is a measured
car echo impulse response of length 256 (see Fig. 1).
The output of the echo path is corrupted by additive
white Gaussian noise with zero mean. The approxi-
mate signal-to-noise ratio of the echo signal is 30dB.
In the simulations, the GSD parameters were M =
10, K = 25 and L = 9. The equivalent FIR filter length
isN=(K—-1)L+M =226][1]. If L <M, the equiv-
alent length IV of the GSD structure is smaller than
the number of parameters M K. However, the perfor-
mance of the GSD improves significantly if L is chosen
less than M. The DCT was used for transforming the
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Figure 1: Car echo path.

time-domain loudspeaker signal. Selective partial up-
dating parameters were set to P = MK = 250 (i.e.,
@ =1) and B = 50, i.e., 1/5th of the filter coefficients
are updated per iteration. Fig. 2 shows the conver-
gence curves for the TD-LMS (N = 226), the full-
update GSD-LMS, the SPU-GSD-LMS and the SB-
GSD-LMS. The stepsizes of the algorithms were set
equal to 0.002. The SB-GSD-LMS has P/B = 5 blocks
of length BQ = 50. As is evident from Fig. 2, the
convergence speed of the SB-GSD-LMS is 1/5th that
of the GSD-LMS. Note that the TD-LMS and GSD-
LMS have almost identical convergence speeds and that
the SPU-GSD-LMS has a comparable convergence to
the GSD-LMS. Fig. 3 shows the convergence curves
for the full-update GSD-LMS and the SPU-GSD-LMS
with P = 250 and B = 25, i.e.,, 1/10th of the GSD
coefficients are updated at every iteration.

7. CONCLUSION

We have developed a reduced-complexity implemen-
tation for the GSD-LMS algorithm. Unlike sequen-
tial block updating, selective partial updating does not
severely penalize the convergence performance of the
GSD-LMS. However, some overhead is introduced by
selective partial updating. This overhead can be sig-
nificant for DSP implementations unless an efficient al-
gorithm such as the sortline algorithm is used. For
VLSI implementations, the overhead for sorting is not
significant.
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