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ABSTRACT

The paper presents a reduced-complexity implementa-
tion for the generalised subband decomposition LMS
(GSD-LMS) algorithm based on selective partial up-
dating. The major advantage of the GSD-LMS over
the transform-domain LMS (TD-LMS) algorithm is the
reduced transform size and the smaller number of di-
visions for power normalisation. The proposed algo-
rithm capitalizes on this by further reducing the num-
ber of multiplications in the update term. The only
overhead introduced is comparison operations for sort-
ing which can be implemented cheaply. The superior
performance of the selective-partial-update GSD-LMS
compared with sequential block updating is demon-
strated via simulation examples.

1. INTRODUCTION

Generalised subband decomposition (GSD) is a struc-
tural subband decomposition of FIR �lters [1]. The re-
sulting structure implements an adaptive FIR �lter of
length N as a parallel connection of L branches where
each branch is composed of a �xed interpolator fol-
lowed by a sparse adaptive FIR �lter with at least N=L
nonzero coe�cients. The �xed interpolators can be im-
plemented by transforms such as the discrete Fourier
transform (DFT), discrete cosine transform (DCT) and
discrete Hartley transform (DHT), to name but a few.

The LMS algorithm can be used to adapt the GSD
coe�cients, which results in a variant of the transform-
domain LMS (TD-LMS) algorithm. For coloured in-
put signals, the TD-LMS algorithm is known to have
a signi�cantly faster convergence speed than the nor-
malised LMS (NLMS) algorithm. This improvement
is achieved by decorrelating (whitening) the input re-
gressor vector to the adaptive �lter. Decorrelation is
accompanied by power normalisation to ensure uniform
convergence from any initialisation with the same dis-
tance from the solution vector. In acoustic echo cancel-
lation applications, the adaptive �lter usually requires
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a large number of coe�cients ranging from 256 to 2048.
The number of adaptive �lter coe�cients is a�ected to
a large extent by the acoustic environment where the
echo canceller is to employed. Inside a car, for instance,
an adaptive FIR �lter with approximately 200 coe�-
cients is deemed su�cient. In a videoconference room,
the required number of coe�cients (the �lter length)
is usually larger. The computational complexity of the
TD-LMS algorithm is proportional to the adaptive �l-
ter length. The root cause of large computational com-
plexity is the number of multiplications that need to be
performed to update the adaptive �lter coe�cients for
every received data sample. The cost associated with
the orthogonal transform and power normalisation also
plays a signi�cant role.

In this paper, we introduce a selective-partial-update
GSD algorithm for acoustic echo cancellation. The
proposed algorithm permits a tradeo� between perfor-
mance and a�ordable computational complexity. The
performance of the new reduced-complexity algorithm
is illustrated with computer simulations for synthetic
as well as real speech signals.

2. GENERALISED SUBBAND

DECOMPOSITION

It is desirable to reduce the computational complex-
ity of the TD-LMS algorithm while maintaining a bet-
ter convergence performance than the ordinary NLMS.
One approach to complexity reduction is to use a smaller
size orthogonal transform than what would be required
by the TD-LMS, and apply the transform outputs to
adaptive FIR �lters of appropriate length after power
normalisation. The outputs of adaptive FIR �lters are
summed to obtain the adaptive �lter output. This ap-
proach is called GSD. GSD reduces the complexity
associated with orthogonal transform and the number
of divisions required for power normalisation.

For an adaptive �lter of length N with regressor
vector x(k) = [x(k); x(k�1); � � � ; x(k�N+1)]T and co-
e�cient vector w(k) = [w0(k); w1(k); � � � ; wN�1(k)]

T ,



the TD-LMS algorithm is de�ned by the recursion [2]

w(k + 1) = w(k) + � e(k)��2v�(k) (1)

where v(k) = Tx(k) is the transformed regressor vec-
tor and
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is the power matrix which is used to normalise the pow-
ers of approximately uncorrelated transform outputs
v(k) = [v0(k); : : : ; vN�1(k)]

T . The power matrix can
be estimated online using a sliding exponential window:

�2i (k) = ��2i (k � 1) + (1� �)jvi(k)j
2;

i = 0; : : : ; N � 1

where 0:95 < � < 1 is the forgetting factor for the
exponential window.

The transform T is a �xedN�N orthogonal matrix
and can be obtained, e.g., from DFT, DCT or DHT.
The computational complexity of the TD-LMS algo-
rithm is N multiplications for calculation of T by bank
of IIR �lters, 3N multiplications and N divisions for
power normalisation, N multiplications for calculation
of e(k), and N multiplications for calculation of the
update term.

GSD uses anM�M orthogonal transform T where
M < N . The transform outputs are applied to sparse
FIR �lters with K nonzero coe�cients spaced by L:

Wn(z
L) =

K�1X
i=0

wn;i(k)z
�iL; n = 0; 1; : : : ;M � 1:

For L �M , the relationship between �lter parameters
is given by N = (K � 1)L +M . The output of the
adaptive �lter is

y(k) =

K�1X
i=0

v
T (k � iL)wi(k)

wherewi(k) is the vector of ith coe�cients of the �lters
Wn(z

L):

wi(k) = [w0;i(k); w1;i(k); : : : ; wM�1;i(k)]
T :

The error signal is

e(k) = d(k)� y(k)

where d(k) is the desired �lter response. The GSD-
LMS algorithm is given by

wi(k + 1) = wi(k) + � e(k)��2v�(k � iL)

i = 0; : : : ;K � 1: (2)

The complexity of the GSD-LMS is M multiplica-
tions for calculation of T by bank of IIR �lters, 3M
multiplications and M divisions for power normalisa-
tion, KM multiplications for calculation of e(k), and
KM multiplications for calculation of the update term.

Setting M = N , K = 1 and L = 1 reduces the
GSD-LMS to the TD-LMS algorithm.

3. USING SELECTIVE PARTIAL UPDATES

The computational cost of GSD can be further reduced
by employing selective partial updating [3]. First col-
lect the regressor vectors and coe�cient vectors to-
gether and then partition the new vectors to P blocks
of length Q:
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Partition the augmented power matrix in a similar way:
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To achieve the desired complexity reduction, only
some blocks of !(k) is updated. To select the blocks
to be updated, we solve the following constrained op-
timisation problem:

min
1�i�P

min
!i(k+1)

kGi(!i(k + 1)� !i(k))k
2
2

subject to �
T (k)!(k + 1) = d(k):

This constrained optimisation problem is reminiscent
of the one used in the derivation of the NLMS algo-
rithm, but it has two main di�erences: (i) minimisa-
tion over coe�cient vector blocks rather than the entire
coe�cient vector, and (ii) the weighting of coe�cient
update by the power matrix. The solution to this op-
timisation problem is obtained by the method of La-
grange multipliers. The cost function to be minimised
is given by

Ji(k) = kGi(!i(k + 1)� !i(k))k
2
2

+ �(d(k) � �T (k)!(k + 1))



where � is a Lagrange multiplier. Solving

@Ji(k)

@!i(k)
= 0 and

@Ji(k)

@�
= 0;

and introducing a small stepsize � to control speed of
convergence yields the recursion

!i(k + 1) = !i(k) + �e(k)
G
�2
i �

�
i (k)

�Hi (k)G
�2
i �i(k)

: (5)

The block to be updated is the one with the smallest
squared Euclidean norm update weighted by the power
matrix partition:

i = argmin
1�j�P
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= argmax
1�j�P

�
H
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�2
j �j(k):

(6)

In (5), the normalisation factor is redundant since the
recursion is over approximately white input signals.
Thus, (5) can be further simpli�ed by dropping the
normalisation factor. Incorporating the selection crite-
rion in (6) into the simpli�ed recursion yields

!i(k + 1) = !i(k) + �e(k)G�2
i �

�
i (k);

i = argmax
1�j�P

�
H
j (k)G

�2
j �j(k): (7)

The selective-partial-update algorithm in (7) can be
generalised to multiple-block selection [3]:

!IB (k + 1) = !IB (k) + �e(k)G�2
IB
�
�
IB
(k) (8)

where IB = fi : �Hi (k)G
�2
i �i(k) is one of the B largest

in �H1 (k)G
�2
1 �1(k); � � � ;�

H
P (k)G

�2
P �P (k)g is the set of

B blocks to be selected. We will refer to (8) as the
selective-partial-update generalised subband decomposi-
tion LMS (SPU-GSD-LMS) algorithm. The subscript
IB in, e.g., !IB denotes an augmented vector com-
posed of blocks with indices in IB , i.e.,

!IB (k) = [!Ti1(k);!
T
i2
(k); � � � ;!TiB (k)]

T

where IB = fi1; i2; � � � ; iBg. Note that setting P =
KM and B = P corresponds to the full-update GSD-
LMS algorithm in (2).

4. SEQUENTIAL BLOCK UPDATES

For comparison purposes, we will consider the sequential-
block GSD-LMS (SB-GSD-LMS) algorithm. While the
SPU-GSD-LMS allows for signi�cant reduction in the
number of multiplications required for calculation of
the update term, it also introduces some overhead for
sorting of the P blocks. A zero overhead alternative
to the SPU-GSD-LMS is the SB-GSD-LMS algorithm
which uses the concept of sequential block updating [4].

Unlike the SPU-GSD-LMS, the SB-GSD-LMS does
not select the blocks to be updated in an \intelligent"
way. It simply updates one block in a sequential man-
ner. The regressor and coe�cient vectors are parti-
tioned into P blocks as in (3) and (4). The SB-GSD-
LMS uses the same recursion in (5). The block index
i is changed with the recursion index k in a circular
fashion:

i = (k mod P ) + 1:

Thus the selection of the block to be updated requires
no sorting. As we will see in the computer simulations,
the convergence speed of the SB-GSD-LMS is 1=P th
that of the GSD-LMS. This reduction in convergence
speed is often not tolerable, in particular for large P .
Although the SB-GSD-LMS has zero overhead for block
selection, its convergence speed is inferior to the SPU-
GSD-LMS.

If B 6= 1 for the SPU-GSD-LMS, the equivalent SB-
GSD-LMS will use P=B blocks of length BQ (assuming
that the division results in an integer).

5. COMPUTATIONAL COMPLEXITY

The SPU-GSD-LMS algorithm requires M multiplica-
tions for the transform, M divisions and 3M multipli-
cations for power normalisation, KM multiplications
for e(k), and B(KM)=P multiplications for the up-
date term where B=P � 1. The SPU concept reduces
the complexity for the update term by a factor of P=B.
The overhead required for the selection of B blocks is
O(2M log2(KM)+2M) comparisons for P = KM (i.e.,
Q = 1). Here the Sortline algorithm [5] is assumed to
be used for sorting the blocks using a heap ofKM num-
bers. Every time a new sample comes in,M elements of
the heap are replaced by new transformed and power
normalised M numbers. This block-shift property of
the heap can be exploited by the Sortline algorithm.

6. SIMULATIONS

We demonstrate the SPU-GSD-LMS in an acoustic echo
cancellation application. The loudspeaker signal x(k)
is a stationary USASI signal with a speech-like spec-
trum, and the acoustic echo path used is a measured
car echo impulse response of length 256 (see Fig. 1).
The output of the echo path is corrupted by additive
white Gaussian noise with zero mean. The approxi-
mate signal-to-noise ratio of the echo signal is 30dB.

In the simulations, the GSD parameters were M =
10,K = 25 and L = 9. The equivalent FIR �lter length
is N = (K � 1)L+M = 226 [1]. If L < M , the equiv-
alent length N of the GSD structure is smaller than
the number of parameters MK. However, the perfor-
mance of the GSD improves signi�cantly if L is chosen
less than M . The DCT was used for transforming the
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Figure 1: Car echo path.

time-domain loudspeaker signal. Selective partial up-
dating parameters were set to P = MK = 250 (i.e.,
Q = 1) and B = 50, i.e., 1=5th of the �lter coe�cients
are updated per iteration. Fig. 2 shows the conver-
gence curves for the TD-LMS (N = 226), the full-
update GSD-LMS, the SPU-GSD-LMS and the SB-
GSD-LMS. The stepsizes of the algorithms were set
equal to 0:002. The SB-GSD-LMS has P=B = 5 blocks
of length BQ = 50. As is evident from Fig. 2, the
convergence speed of the SB-GSD-LMS is 1=5th that
of the GSD-LMS. Note that the TD-LMS and GSD-
LMS have almost identical convergence speeds and that
the SPU-GSD-LMS has a comparable convergence to
the GSD-LMS. Fig. 3 shows the convergence curves
for the full-update GSD-LMS and the SPU-GSD-LMS
with P = 250 and B = 25, i.e., 1=10th of the GSD
coe�cients are updated at every iteration.

7. CONCLUSION

We have developed a reduced-complexity implemen-
tation for the GSD-LMS algorithm. Unlike sequen-
tial block updating, selective partial updating does not
severely penalize the convergence performance of the
GSD-LMS. However, some overhead is introduced by
selective partial updating. This overhead can be sig-
ni�cant for DSP implementations unless an e�cient al-
gorithm such as the sortline algorithm is used. For
VLSI implementations, the overhead for sorting is not
signi�cant.
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