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ABSTRACT

Differential microphone arrays promise high directional
gain with compact arrangements. However, they also
come with the problem that even small deviations in
microphone properties can cause severe degradation of
the array’s performance. For automotive applications
the effects of microphone deviations have to be reduced.
In this paper the performance of first order differential
arrays is examined. The frequency dependence of the
important parameters is thoroughly investigated. This
paper contributes the expression for the frequency de-
pendent directivity index, which is published for the
first time for differential arrays. Furthermore a new
approach to model effects of microphone deviations for
low frequencies is presented.

1. INTRODUCTION

A differential microphone array consists of two omni-
directional sensors with distance d as shown in Fig. 1.
Sound from endfire direction θ = 0 takes the acoustic
delay τA = d

c between the sensors. With the delay τ
(0 ≤ τ ≤ τA) the directivity pattern can be adjusted.
The direction of arrival of the desired signal is always
θ = 0 for a differential array.
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Figure 1: Structure of a first order differential array.

2. DIRECTIONAL RESPONSE

The array is excited by plane waves with wavenum-
ber �k. Because of radial symmetry the sensor signals
X1(ω) and X2(ω) can be expressed with the angle of
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incidence θ and the frequency ω. There is the relation
|�k|d=kd=ωτA between wavenumber and frequency.

At the center point of the array the signal X0(ω)
could be picked up by a virtual microphone. A plane
wave impinging under angle θ with wavenumber k = 2π

λ
evokes the microphone signals X1(ω) and X2(ω),

X1(ω) = X0(ω) · exp{j kd
2 cos θ} , (1)

X2(ω) = X0(ω) · exp{−j kd
2 cos θ} . (2)

The output of the differential array is

YD(ω) = 1
2 (X1(ω) − X2(ω) · exp{−jωτ} ) . (3)

The directional response of the array HD is the transfer
function from the fictitious microphone signal X0(ω) to
the array output YD(ω),

HD(ω, θ) = j · exp{−j ωτ
2 } · sin

(
kd
2 ( τ

τA
+ cos θ)

)
. (4)
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Figure 2: Shapes of the directivity pattern for low fre-
quencies: (a) cardioid, (b) hypercardioid, (c) dipole

In literature usually very small distances kd�1 are
assumed which justify the approximation sinα ≈ α. In
this case, there is an idealized directional response H̃D,

HD(ω, θ) ≈ H̃D(ω, θ) = j · kd
2 · ( τ

τA
+ cos θ) . (5)

In this representation, basic characteristics of differen-
tial arrays are obvious :

• The shape of H̃D(θ) is determined by τ
τA

+cos θ
which is not dependent on frequency [5]. Well
known shapes as the dipole ( τ

τA
= 0), the car-

dioid ( τ
τA

=1) and the hypercardioid ( τ
τA

= 1
3 ) are

shown in Fig. 2.



• Due to the signal subtraction in Fig. 1 a phase
shift of π

2 occurs.

• The directional response H̃D(ω) shows first order
high pass characteristics (Fig. 3a).

For low frequencies the difference signal YD gets very
susceptible to any disturbances because of the high pass
characteristics of HD(ω). Due to this reason, the dis-
tance d should not be chosen too small, what may con-
flict with the postulation kd�1.

3. DEPENDENCE ON FREQUENCY

3.1. Cut-off-frequency

In the exact response (Eq. (4)) there is the sine function
scaling the amplitude. It is only reasonable to operate
the differential array in the low frequency range, up to
the first maximum of the sinus. This first maximum
fixes the cut-off-frequency ωc,

ωc =
π

τA + τ
. (6)

Fig. 3a shows the exact frequency response according to
Eq. (4) for a cardioid. The cut-off-frequency is marked
with a circle. For low frequencies the directional char-
acteristics (first order gradient) are approximately in-
dependent of frequency. This is obvious because of the
parallel lines in Fig. 3. However, as the frequency in-
creases the shape gets more and more deformed. Even
total cancellation of the desired signal occurs at certain
frequencies.
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Figure 3: Directional response HD of a cardioid for
selected angles (a) without and (b) with equalization.

3.2. Equalization Filter

In order to compensate the highpass characteristics of
HD(ω, θ) a filter Weq(ω) has to be designed. For the
endfire direction θ=0 the equalized frequency response

HD(ω, θ=0) · Weq(ω) has to equal 0dB for frequencies
below ωc.

Weq(ω) =

{ 1
sin(π

2 · ω
ωc

) , 0 < ω ≤ ωc

1 , otherwise
(7)

The equalized directional response HD(ω, θ) ·Weq(ω) is
shown in Fig. 3b.

For low frequencies ω →0 the equalization filter Weq

assumes very high values. That means that any distur-
bance of the signals is strongly amplified. A lower limit
for signal disturbance is represented by sensor noise. It
determines the minimum limit for the frequency range
that is reasonable for operation of a differential array.
Any additional error sources such as microphone mis-
match push the lower bound up to higher frequencies.

3.3. Directivity index

The array gain which is achieved in a spherical isotropic
noise field defines the directivity index DI. It can be
calculated by averaging the squared absolute value of
the directional response over the whole sphere (geomet-
ric interpretation) [3].

DI(ω) =
|H(ω, θ=0)|2

1
4π

∫ 2π

0

∫ π

0
|H(ω, θ)|2 sin θ dθ dφ

(8)

Taking the exact response HD from Eq. (4) a new fre-
quency dependent expression for the directivity index
can be derived, where si(x) = 1

x sin(x).

DID(ω) =
2 · sin2

(
ω
2 (τA + τ)

)
1 − si(ωτA) · cos(ωτ)

(9)
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Figure 4: (a) DI for cardioid, hypercardioid and dipole.
(b) DI for low frequencies, kd � 1.

The well known directivity index for low frequencies

lim
ω→0

DID(ω) = D̃ID =
3 (τA + τ)2

3τA
2 + 3τ2

(10)



is also the result for the approximated response H̃D

from Eq. (5). Fig. 4a shows the directivity index for
the dipole, the cardioid and the hypercardioid. The
cut-off-frequencies are marked with circles. The direc-
tivity index DID assumes even negative values for some
frequencies above ωc. Fig. 4b shows the directivity in-
dex for low frequencies according to Eq. (10). It is well
known that the hypercardioid ( τ

τA
= 1

3 ) maximizes the

approximated directivity index D̃ID.

4. RELATION TO THE SUPERDIRECTIVE
ENDFIRE ARRAY

A big disadvantage of differential arrays is the cleft
curve of the DI for increasing frequencies. In the higher
frequency range a simple delay and sum beamformer
that is steered in endfire direction works better than
the differential array. The idea is to combine the ad-
vantages of both structures: the high directional gain of
the differential array at low frequencies and the roughly
frequency independent gain of the delay and sum array
for the upper frequency range.

The optimal structure for a microphone array with
respect to the DI is the superdirectional beamformer
(SDB). It can be realized by a delay and filter structure
or equivalently by a GSC like structure with a fixed
filter as shown in Fig. 5 [4]. This structure can be
interpreted as a combination of an endfire delay and
sum beamformer and a differential beamformer. The
summation path contains the delay and sum signal YS .
The difference path with signal Y

(i)
D conforms with a

cardioid differential array as shown in Fig. 1 however
turned by 180◦. The directional response of the delay
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Figure 5: Structure of a superdirective array in GSC
like form.

and sum beamformer HS(ω, θ) is

HS(ω, θ) = exp{−j kd
2 } · cos

(
kd
2 (1 − cos θ)

)
, (11)

and the directional response of the turned cardioid is

H
(i)
D (ω, θ) = j · exp{−j kd

2 } · sin (
kd
2 (1 − cos θ)

)
. (12)

In both Eq. (11) and Eq. (12) all directional informa-
tion lies in the term kd

2 (1− cosθ). The basic difference
between the sum and delay array and the differential
array is the cosine and sine function that treat this
directional term.

In order to achieve the optimum output signal YSD,
the differenence signal Y

(i)
D has to be filtered by WSD

and then subtracted from the sum signal YS . The op-
timum filter is the Wiener solution [4]

WSD(ω) =
−j · si(ωτA) sin(ωτA)
1 − si(ωτA) cos(ωτA)

. (13)

It can be split into two parts. One part is the equaliza-
tion filter Weq(ω) for the differential array that is given
in Eq. (7). The other part is a scaling filter Wsc(ω) that
defines the weighting of the differential beamformer sig-
nal to the delay and sum beamformer signal.

WSD(ω) = −j · Weq(ω) · Wsc(ω) (14)

The scaling filter is shown in Fig. 6a. The directivity
index for the endfire SDB [2] is known to be

DISD(ω) = 2 · 1 − si(2 ωτA)
1 − si2(ωτA)

. (15)

At low frequencies the delay and sum path corresponds
to an omnidirectional microphone and the differential
path is approximately an ideal cardioid. With the
weighting factor of Wsc = 1.5 the SDB output corre-
sponds to a hypercardioid which is known to be opti-
mum for the differential array. So the SDB operates as
a differential array in the low frequency range. The di-
rectivity indices for the differential beamformer, the de-
lay and sum beamformer and the SDB can be compared
in Fig. 6b. Indeed the SDB assumes for low frequencies
the same curve as the hypercardioid. Above the cut-
off-frequency the delay and sum endfire beamformer
outperforms the hypercardioid. But at any frequency
the SDB takes the optimal value for the directivity in-
dex.
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Figure 6: (a) Scaling filter Wsc(ω). (b) DI for SDB,
hypercardioid and endfire delay and sum beamformer.



5. INFLUENCE OF MICROPHONE
TOLERANCES

In this section the influence of microphone mismatch
on first order differential arrays is investigated. A suit-
able model for microphone mismatch [1] consists of
a transfer function M = Mref + ∆M . The nominal
sensor transfer function Mref is in this case normal-
ized to the value 1. The deviation ∆M is assumed
to be an independent random complex variable with
σ2

M = E{|∆M |2} where E{.} denotes the expectation
value.

The signals of the two different sensors in Fig. 1 are

X̂1(ω) = X0(ω) · (1 + ∆M1) · exp{j kd
2 cos θ} , (16)

X̂2(ω) = X0(ω) · (1 + ∆M2) · exp{−j kd
2 cos θ} . (17)

The directional response ĤD for the differential ar-
ray with microphone tolerances can be derived simi-
lar to Eq. (4). But now there are additional terms
which depend on ∆Mi (i = {1, 2}). Taking the expec-
tation value of |ĤD(ω, θ)|2 the quadratic terms with
E{|∆Mi|2} remain whereas the linear terms E{∆Mi}
disappear.

E{|ĤD(ω, θ)|2} = |HD(ω, θ)|2 + 2σ2
M (18)

With this result a modified expression for the directiv-
ity index D̂ID(ω) can be derived similar to Eq. (9).

E{D̂ID(ω)} =
2 · sin2

(
ω
2 (τA + τ)

)
+ σ2

M

1 − si(ωτA) cos(ωτ) + σ2
M

(19)

It is important to realize that in Eq. (18) the direc-
tional response HD(ω, θ) shows high pass characteris-
tics. When the equalization filter Weq from Eq. (7)
is applied the effects of the microphone mismatch are
strongly amplified for low frequencies.

6. EXPERIMENTAL RESULTS

A first order differential microphone array with vari-
able distance d has been built up using microphones of
the type Sennheiser ME102. Measurements in an ane-
choic chamber with plane waves from different angles
of incidence θ yield the results shown in Fig. 7 where
the directivity index has been derived from the mea-
sured directional response. In automotive applications
it may be difficult to calibrate the microphones. For
this reason the sensors have not been calibrated.

For a number of single microphones of the same
type the frequency response has been measured. The
average value of these responses has been taken as nom-
inal frequency response Mref . After normalization of
the responses with respect to Mref the variance of the
microphone mismatch has been found to be σ2

M =
0.038. σ2

M is approximately independent of frequency
and angle. Fig. 7 shows that the signal degradation for
low frequencies is well predicted by the new model.
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Figure 7: Experimental result for directivity index for
a hypercardioid with d = 5cm.

7. CONCLUSIONS

In literature very little work can be found on the fre-
quency dependent behaviour of differential arrays. This
paper contributes the frequency dependent expression
of the directivity index for first order differential mi-
crophone arrays. It can be extended by a model for
microphone mismatch which predicts the behaviour at
low frequencies.

With the new frequency dependent expression for
the DI and the model for deviations, a frequency range
can be determined for the favourable operation of the
array. The lower bound of this range is set by the
microphone properties such as deviations, the upper
cut-off-frequency is set by the array geometry d. For
automotive applications the distance d should not be
chosen too small in order to increase robustness against
sensor mismatch. Finally it is shown that the cut-off-
frequency of the differential array can be overcome with
a combination of a differential array and a delay and
sum beamformer.
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