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Per Åhgren a and Erik G. Larsson b,∗

aDepartment of Systems and Control, Information Technology, Uppsala University,
P.O. Box 27, SE-75103 Uppsala, Sweden.

Per.Ahgren@syscon.uu.se
bDept. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611.

ABSTRACT

In this paper an approximation to the sliding window
Recursive Least Squares (RLS) algorithm with filter es-
timate updates using the conjugate gradient algorithm
is applied to the Acoustic Echo Cancellation (AEC)
problem for the mono case. The method is shown to
perform much better than the Normalized Least Mean
Squares (NLMS) algorithm which is one of the stan-
dard algorithms used for AEC today. While it performs
somewhat worse than RLS which is the optimal (un-
biased) estimator in a least squares sense, it is shown
to be computationally much less demanding. In con-
trast to RLS we believe that it may be feasible to im-
plement in real time and hence the method presented
here should be one of the best algorithms to consider
for the AEC problem.

1. INTRODUCTION

In hands-free communication [5] such as full-duplex
teleconferencing the acoustic echoes of far-end speech
needs to be removed. The method for doing this is
called Acoustic Echo Cancellation and is usually per-
formed using time domain FIR filters to model the
acoustic echo paths and to predict the echoes. Ide-
ally, the echoes can then be removed by removing the
predicted echoes from the microphone signal. Stud-
ies show that room echoes can be very long and thus
the FIR filters must be of very high orders with sev-
eral thousand coefficients [2]. Since the algorithms for
AEC should be feasible to implement on a standard
Digital Signal Processor (DSP) it is therefore very im-
portant that the requirements of the filter estimation
algorithms algorithms in terms of storage and compu-
tational complexity should not be too large. Since the
echo paths are time-varying it is also very important
that the algorithm rapidly adapts to changes in these.
Finally it is very important that the adapted impulse
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responses are adapted to the true echo paths and not
only to a solution that removes the echo.

A vast number of methods have been tested for the
AEC problem [3] of which probably the most commonly
used method, due to its low computational complex-
ity, is the normalized least mean squares (NLMS) algo-
rithm. It adapts, however, very slowly and what would
be desired is an algorithm that adapts faster such as the
recursive least squares (RLS) algorithm. The RLS1 al-
gorithm is, however, too computationally complex and
requires too much memory to be implemented in a real-
time application on a standard DSP. Instead algorithms
such as the fast recursive least squares (FRLS) and the
affine projection (AP) algorithm have been proposed.
The FRLS algorithms suffer, however, from problems
with numerical instability and it has been shown [6]
that all known FRLS algorithms are unstable when
using a forgetting factor less than one. The AP al-
gorithm is inbetween the RLS and NLMS algorithms
both regarding complexity and speed of adaptation and
can trade increased adaptation speed against increased
computational complexity.

In [6] a low complexity approximation of RLS with
sliding data window was proposed which we will call
Conjugate-Gradient RLS (CG-RLS). CG-RLS was shown
to have a very fast speed of adaptation while requiring a
relatively small amount of memory and being computa-
tionally much less demanding than the RLS algorithm.
The goal of this paper is to apply the technique in [6]
to the AEC problem.

2. CONJUGATE-GRADIENT RLS

The sliding window RLS algorithm tries to estimate a
FIR filter h(t) that minimizes the sum of squared errors

V (t) =
t∑

j=t−M+1

|e(j)|2 �
t∑

j=t−M+1

|d(j) − h∗(t)x(t)|2

� ‖d(t) − X(t)h(t)‖2,

(1)

1Unless otherwise stated, we mean by RLS the (exact) recur-
sive solution to the least squares problem [7].



where h(t) is the filter to estimate,

x(t) � [x(t) x(t − 1) . . . x(t − n + 1)]T (2)

is the input data vector, d(j) is the known desired filter
output,

d(t) � [d(t − M + 1) d(t − M + 2) . . . d(t)]T , (3)

n is the length of the filter h(t) and M is the length
of the sliding data window. The Mxn Toeplitz matrix
X(t) is defined as

X(t) �




x(t − M + 1) . . . . . . x(t − M − n + 2)
...

. . .
...

x(t − n + 1)
. . .

...
...

. . . x(t − M + 1)
...

. . .
...

x(t) . . . . . . x(t − n + 1)




,

(4)
where (̄·) denotes the complex conjugate. As is well-
known, the filter h(t) minimizing (1) is given by the
solution to the normal equations

X∗(t)X(t)h(t) = X∗(t)d(t), (5)

which can be computed in a number of different ways.
The perhaps most common approach is to form a re-
cursion of (X∗(t)X(t))−1 and X∗(t)d(t) in time, and
solve for h(t) by

h(t) = (X∗(t)X(t))−1X∗(t)d(t) (6)

as is done by RLS [6]. The approach taken in [6] is to
solve (5) by using the conjugate gradient (CG) algo-
rithm [4] which can be efficiently implemented for the
least squares problem at hand using the Fast Fourier
Transform (FFT) and its inverse (IFFT). This is an
algorithm that iteratively solves (5) exactly from any
initial estimate in at most as many steps as the num-
ber of parameters to estimate, i.e., n. If the initial
estimate is good then CG will converge much faster to
the solution. The method proposed in [6] is to solve
(5) using CG, at time t using the solution obtained at
time t − 1 as an initial estimate. In that way only one
or a few iterations per time step are required to ensure
good adaptation properties of the algorithm.

The CG algorithm is presented in [4] but for com-
pleteness we present it here as well using the terminol-
ogy used for our problem. Denoting

R(t) � X∗(t)X(t) (7)

and
p(t) � X∗(t)d(t) (8)

we describe the CG algorithm for solving (5) in Table 1.
Note that in the CG algorithm in Table 1 the initial

k = 0
r = p(t) − R(t)h(t − 1)
ρ0 = ‖r‖2

2

While (
√

ρk > ε‖p(t)‖2 and k < kMAX)
k = k + 1
If k = 1

q = r
else

βk = ρk−1/ρk−2

q = r + βkq
w = R(t)q
αk = ρk−1/qTw
hk(t) = hk−1(t) + αkq
r = r− αkw
ρk = ‖r‖2

2

h(t) = hk(t)

Table 1: The conjugate gradient algorithm.

filter estimate h(t) is set as the filter estimate of the
previous time step as was done in [6]. Also note that the
most computational demanding part in the algorithm
is computing R(t)q, which for the CG algorithm to
be computationally attractive must be done using as
small a number of operations as possible. As we will
see this matrix-vector product can be performed very
efficiently using the FFT/IFFT. First note that R(t) =
X∗(t)X(t) and that X(t) (as well as X∗(t)) is a Toeplitz
matrix. It is well known that any Toeplitz matrix X(t)
can be extended to a circulant matrix

C =
[
X(t) E
G H

]
, (9)

where E, G and H are suitably chosen matrices. Since
circulant matrices can be decomposed as

C = F∗DF (10)

where F is the Fourier (or Discrete Fourier Transform)
matrix and D is a diagonal matrix whose elements are
the FFT of the first column of C (note that the dimen-
sion of the square matrix C can easily be adjusted to
be a power of two so that the FFT can be applied).
Thus the multiplication

X(t)q � a (11)

can be computed as[
a
b

]
= C

[
q
0

]
= F∗DF

[
q
0

]
, (12)

where the value of b is unimportant. Since multiplying
a Fourier matrix with a vector is an IFFT operation (or
a FFT operation for the inverse of the Fourier matrix)
the multiplication X(t)q can be performed using the
FFT/IFFT. The multiplication

X∗(t)(X(t)q) � R(t)q (13)



can be computed in a similar manner using the
FFT/IFFT.

We remark that the CG algorithm is often used
with a preconditioner, leading to the so-called precon-
ditioned CG (PCG) algorithm. This amounts to solve
the transformed system

�X∗(t)X(t)h̃(t) = �X∗(t)d(t), (14)

where

�X∗(t)X(t) � P−1(t)X∗(t)X(t)P−1(t), (15)

�X∗(t)d(t) � P−1(t)X∗(t)d(t), (16)

h̃(t) � P(t)h(t) (17)

and the preconditioner P(t) is chosen such that
�X∗(t)X(t) has a low condition number. Since it ap-

pears for our problem that the CG algorithm works
well also without preconditioning, and since precondi-
tioning adds considerably to the computational com-
plexity we do not consider it in this work.

It can be shown that the computational complexity
of the CG-RLS algorithm is O((n + M) log2(n + M))
(since the most computationally demanding operations
can be performed using FFT) which is higher than the
complexity of the NLMS algorithm that is O(n) but
considerably lower than that for the RLS algorithm
that is of complexity O(n2). It can also be shown
that the storage requirements for CG-RLS are of or-
der O(n + M) which is comparable to those for NLMS
and much lower than those for RLS (O(n2)). Also note
that CG-RLS is highly parallellizable since it includes
several FFT operations which are easily parallelized.

3. NUMERICAL EXAMPLES

To demonstrate the performance of CG-RLS for AEC
we have performed numerical simulations, comparing
CG-RLS to NLMS and RLS. Data was generated us-
ing a 1 second long speech sequence sampled at 16 kHz
as a far-end signal and impulse responses obtained by
a high-resolution acoustic impulse response prediction
code. Four data sets were generated using four differ-
ent time-invariant impulse responses of 600 filter taps
each as the true room impulse responses. For each data
set the signal to noise ratio (SNR) was adjusted to 40
dB (roughly corresponding to a hands-free telephony
setup in a room with a low noise level) by adding white
Gaussian noise (WGN) of suitable variance to the mi-
crophone input signal. To cancel the echo NLMS, RLS
and CG-RLS were applied to all data sets to compute
room impulse response estimates of lengths n = 500
filter taps each (shorter than the true room impulse
responses since these are in reality of infinite length
and thus always longer than the estimated impulse re-
sponses).

For NLMS the step size parameter was set to the
standard choice of µ = 0.7 to get a good adaptation
speed while not being too sensitive to noise, and for
the RLS algorithm the standard initialization of the P
matrix, P (t0) = 100I, was used. No forgetting fac-
tor was used for RLS (this makes the results for RLS
somewhat better than if a forgetting factor was used
which would be the case in a real scenario). To mini-
mize the complexity of CG-RLS the length of the data
window was chosen as M = n which is the minimum
to make R(t) full rank (which is a required for (1) to
have a unique solution), and only one iteration of the
CG algorithms was performed per sample. (Note that
CG-RLS requires M + n data samples to start the al-
gorithm while NLMS and RLS only require n samples.
This is easily seen in the plots for the numerical results
and should be taken into account when comparing the
performance of the algorithms.)

To assess the performance of the algorithms two
measures were used: the Echo Return Loss Enhance-
ment (ERLE) which measures the echo cancellation
performance, and the misalignment [1] which measures
the accuracy of the impulse response estimation. The
ERLE is defined as

ERLE = −10 log10

(
σ2

e

σ2
d

)
⇒ ERLE(t)

≈ −10 log10

(∑t
t−L+1 e2(t)∑t
t−L+1 d2(t)

)
,

(18)

where L is the length of a sliding window for the ERLE
estimation, and the misalignment is defined as

M(t) =
‖h(t) − h̃‖2

‖h̃‖2
, (19)

where h̃ is the true room impulse response truncated
to be of the same length as h(t). For an algorithm to
be well-suited for AEC the ERLE value should be as
high as possible and the misalignment should be as low
as possible.

The results are displayed in Figures 1-2 in terms
of misalignment and ERLE achieved by the algorithms
for the four different data sets. From the plot of the
misalignment it is apparent that the adaptation of RLS
to the room impulse response is much faster than that
of CG-RLS, but also that the adaptation of CG-RLS is
much faster than that of NLMS. Finally, from the plot
of the echo cancellation performance (ERLE) it is clear
that NLMS performs worst and that CG-RLS performs
similarly to RLS.

At first sight it could seem strange that for some
samples CG-RLS even outperforms RLS in terms of
ERLE since both algorithms minimize (1). One should,
however, keep in mind that the data window for RLS
is infinite while it is finite (and relatively short) for
CG-RLS and therefore the minimum of (1) achieved
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Figure 1: Misalignment for MAEC for the four different
impulse responses using RLS (dotted), CG-RLS (solid)
and NLMS (dashed).
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Figure 2: Echo cancellation performance for MAEC for
the four different impulse responses using RLS (dot-
ted), CG-RLS (solid) and NLMS (dashed).

by CG-RLS can be smaller than that for RLS. The
filter estimates obtained by CG-RLS will, however, be
much more noisy which is easily seen in the plot of the
misalignment where the misalignment for RLS is much
smaller than that for CG-RLS.

Another striking feature of the plots of Figure 2 is
the “valleys” in the plots of the ERLE values. It might
seem strange that the echo cancellation performance
suddenly gets much worse at some points although the
misalignment does not. This is, however, caused by
the influence of the unmodeled tails of the true room
impulse responses (remember that the estimated im-
pulse responses are always shorter than the true im-
pulse responses). When the power of the input signal
(which consists of speech) abruptly decreases the in-
fluence of the unmodeled tail on the echo cancellation
performance will be much larger than otherwise and
there will be a reduction in the echo cancellation per-

formance.

4. CONCLUDING REMARKS

In acoustic echo cancellation a fast adaptation of the
filter estimates to the true room impulse response(s)
is important. Perhaps even more important is, how-
ever, that the computational complexity and storage
requirements for the acoustic echo canceller are kept
low to make real-time implementation feasible. An al-
gorithm that appears to fulfill these requirements is
the CG-RLS algorithm that was introduced in [6], and
applied to the MAEC and SAEC problems in this pa-
per. The numerical results show that it performs much
better than NLMS, which is one of the standard al-
gorithms for AEC today. It performs, however, worse
than RLS but as is shown the computational complex-
ity and the storage requirements are much lower than
those for RLS, which makes a real-time implementation
for AEC feasible. This is hardly the case for RLS. CG-
RLS is, however, much more computationally complex
than NLMS but if that increase in computational com-
plexity is affordable, CG-RLS could be the preferred
choice.
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