
MORPHOLOGICAL SIZE DENSITIES: APPLICATION TO OPTIMAL 
TEXTURE CLASSIFICATION AND NOISE FILTERING 

K. Sivakumar and J. Goutsias 

Department of Electrical and Computer Engineering 
Image Analysis and Communications Laboratory 

The Johns Hopkins University 
Baltimore, MD 21218 

siva@shape.ece.jhu.edu, goutsiasQmycenae.ece.jhu.edu 

ABSTRACT 

Morphological size densities are frequent.ly used as de 
scriptors of granularity or texture within an image. They 
have been successfully applied in many image processing 
and analysis tasks. It is extremely difficult however to an- 
alytically calculate the size density. In a previous work, we 
studied the problem of estimating the (discrete) morpholog- 
ical size density of random images, by means of empirical as 
well as Monte Carlo estimators. In this paper, we present 
applications of size density estimators to t,he problems of 
texture classification and morphological filtering. Experi- 
mental results demonstrate that texture classification, by 
means of morphological size densities, produces highly ac- 
curate results, even when the texture classes are chosen to 
be visually similar. For morphological filtering, we have ob- 
tained, by means of morphological size densities, two useful 
classes of filters, namely the class of generalized alternating 
filters and the class of generalized alternating sequential fil- 
ters, which generalize the well known alternating filters and 
alternating sequential filters? respectively. 

1. INTRODUCTION 

The notion of morphological size density was first conceived 
by Matheron [l]. Morphological size densities provide a 
wealth of information about image structure and, as such, 
they have been extensively used in a number of image pro- 
cessing and analysis tasks, such as shape and texture anal- 
ysis [2], multiscale shape representation [3], morphological 
shape filtering (4,5], and the analysis, segmentation, and 
classification of shape and texture [S]. Given a grayscale 
random field X on Z2, of G gray levels, the function 

1 
s&s) = - EWYSW - r~+lWIlwl, for s 2 0 

GIWI EII~+I(X) - ~I,~-I(X)IIW], for s 5. -111) 

where E( ] denotes expectation, IAl denotes the area (car- 
dinality) of a set A, llXljw = Cwew IX(w)] and W is a 
data observation window, is known as the morphological 
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size density of X (s in (1) is an integer). Mostly, we con- 
sider either rS(X) = XC&, &(X) = X@sB, where @ and 
8 denote morphological erosion and dilation, respect,ively, 
with B being a flat finite structuring element that contains 
the origin, B = {-b ] b E B}, and sB = (s - l)B @B: for 
s 2 1, or rs(X) = XOsB, &(X) = X0&, where 0 and 
0 denote morphological opening and closing, respectively. 

As not.ed by Matheron, it is extremely difficult, to ana- 
lytically calcu1at.e the size density of a given random field. 
In order to effectively employ size densities in practice, it is 
imperative to obtain reliable estimates of these quantities. 
In a previous work [7]? we studied the problem of estimating 
t,he (discrete) morphological size density of random images, 
by means of empirical as well as Monte Carlo estimators. 
The superiority of the Monte Carlo estimation approach 
was evident from theoretical analysis and experimental ob- 
servations. 

In t.his paper, we apply size densit,y estimators to two 
traditional image processing and analysis problems. Our 
presentation is brief due to space constraints. For further 
details however, the reader is referred to [8]. 

2. TEXTURE CLASSIFICATION 

Texture classificat~ion is a key problem in image analysis. 
The purpose of this section is to demonstrate the power of 
morphological size densities, and the associated estimators, 
for classifying random text.ures. We assume here that tex- 
tures are to be classified into K different classes. We follow 
a model-based approach, with each class k: characterized 
by means of a Markov random. field (MBF) model Xk. The 
class conditional probability density function is assumed 
t.o be multivariate Gaussian with mean vect.or rnh and co 
variance matrix Ck, where mk(i) = E[vk(i)] and Ck(i,j) = 
E[vk(i) Vk(j)], with 

Vk(i) = hso--i+l(Xk) - ‘-fs,--i+2(Xk)~~w 

b&,--i+ll(Xk) - ~~s,--i+ll--1(Xk)~~w ’ 

(2) 

for 1 5 i 5 s,+l and s,+2 5 i < 2(s,+l), respectively, and 
some maximal size so > 0. If t,he prior class probability is 
uniform, the minimum error Bayes classifier is equivalent to 
assigning a texture sample X wit.h feature vector v, given by 



(2) with XI, being replaced by X, to the class of minimum 
distance value 

d&(v) = (v - mk)’ CL1 (v - mk) -+ log(det(ck)), (3) 

where ( )’ denotes vect,or transpose and det(A) is the det,er- 
minant of matrix A. 

Implementation of the this approach requires a training 
and a classification step. During training, a MRF model 
is fit to class k and mk, Ck: are calculated for this model. 
Model fit may be achieved by means of a MRF statisti- 
cal inference technique, like Monte Carlo maximum like 
lihood [9], that determines the energy function uk(X) of 
MRF xk from texture data representative of class Ic. After 
uk(X) is determined, the Monte Carlo size density esti- 
mators, discussed in [8], are employed in order to estimate 
vector mk. Matrix Ck is estimated by means of a Markov 
chain Monte Carlo (MCMC) approach similar to t,he one 
used for mk. The t.raining step thus produces a collec- 
tion {(mk: Ck), k: = 1,2,. . . , K} of mean/covariance pairs 
that characterize the K classes under consideration. Dur- 
ing classification, the feature vector v is calculated from a 
given image X, by means of the empirical estimators dis- 
cussed in [8], and X is classified to be in class 1 if dl(v) = 
min{dk(v),k=1,2,...:K}Zwithdk(v)givenby(3). 

The use of erosion/dilation and opening/closing size 
densities as features for texture classification was test.ed in 
t,wo experiments. Figure 1 depicts the results for grayscale 
(for G = 15) texture classification. Four classes were as- 
sumed with each class characterized by a 256 x 256 pixel 
auto-binomial model with given parameters [8]. 

Figure 1: Opening/Closing and Erosion/Dilation size den- 
sity based texture classification results in 100% classifica- 
tion accuracy. 

The four depicted images are represent.ative realizations 
from each class obtained by means of a MCMC interchange 
algorithm, where the histogram of the initial image was 
chosen to be uniform. The feature vector v was obtained 
with so = 9 and y, 4 being either erosion/dilation or open- 
ing/closing with respect to the RHOMBUS st.ructuring el- 
ement. A total of 4 x 19 images were employed (19 images 
per class) for testing classification performance. 4 x 7 im- 
ages were obtained from the training step (these images 
were used in the MCMC estimation of rnb and Ck, for 
k = 1,2,3,4) with the other 4 x 12 images obtained by 

means of MCMC independent.ly of the training st,ep. Clas- 
sification based on the erosion/dilation and opening/closing 
size densities were exceptional, producing no misclassifica- 
tions; i.e., 100% accuracy. 

The second experiment, depict,ed in Figure 2. was de 
signed to classify 4 x 19 grayscale images (wit.h G = 15) 
into four classes as well. In t,his case however, the classes 
are charact.erized by very similar size densit.ies. Class 1 is 
characterized by the same auto-binomial model as Class 4 
in Figure 1. Classes 2, 3, and 4 are characterized by auto- 
binomial models whose paramet.ers are the ones of Class 
1 divided by 2: 3, and 4, respectively. Notice the visual 
similarity between the four realizations. 

Figure 2: Erosion/Dilation size density based texture classi- 
fication resulted in 91% accuracy, whereas Opening/Closing 
based classification resulted in 93% accuracy. 

Classification based on the erosion/dilation size den- 
sity produced 7 errors, resulting in 91% classification ac- 
curacy, whereas classification based on the opening/closing 
size density produced 5 errors, resulting in 93% accuracy. 
All errors occurred in classifying Class 2 textures as Class 1 
(in the case of the erosion/dilation size density) or Class 1 
textures as Class 2 (in the case of the opening/closing size 
density). 

Texture classification by means of size densities pro- 
duces highly accurste result,s even in cases when t,ext,ures 
are visually indistinguishable. The training step is corn- 
putationally intensive due to the need of determining the 
proper MRF model for each class and the extensive MCMC 
simulations required for obOa.ining estimates of (mk? Ck), 
for k = 1,2,... , K. This step however needs to be done 
once and off-line. The classification step is easy to imple- 
ment, due to the relatively simple form of the feature vector 
v. A classification technique based on the erosion/dilation 
size density should be considered first, since this t,echnique 
requires substant,ially less computations than a technique 
based on opening/closing size densities and may provide 
acceptable classification results in certain cases. 

3. MORPHOLOGICAL FILTERING 

In many image processing applications, image data Y are 
corrupted by noise and clutter. It is therefore of great inter- 
est to design an opcrat.or Q that, when applied on Y, opti- 
mally removes noise and clutt,er. Solutions to this problem, 
known as image restoration, have been recently obtained 
by means of morphological filtering [4: 51. Image data Y are 



considered to be realizations of a random field Y, given by 
means of a degradation equation of the form 

Y = (XAN;)vNa, (4) 

where A, V denote minimum and maximum, respectively, 
X is a random field that models the image under considera- 
tion, Ni , Nz are two random fields that model degradation, 
and NT (20) = G - Nr (w), for every w in an observation win- 
dow W. In particular, Nr, Nz may model degradation due 
to clutter, sensor noise, incomplete data collection, or oc- 
clusion. This type of noise is frequently referred to as a 
min/max noise or “twosided” noise. The problem of opti- 
mal image restoration consists of designing a set operator 
\k such that 

jL = a(Y) = Q((X A N;) V N2). (5) 

is “optimally close” to X, in the sense of minimizing a dis- 
tance metric Dk x. It is this problem that we are consid- 
ering in this section. Before we proceed however we need 
the following definition (see also Property 4 in [4]). 

Definition 1 Let X and N be two discrete-valued func- 
tions, taking values in (0, 1, . . . , G}, defined over a dis- 
crete domain W. The support supp(X) of X is defined 
as supp(X) = {w E W 1 X(w) # O}. X an,d N are 
said to be non-interfering, with respect to a structuring el- 
ement B, if the supports of X and N are disjoint and 
(XVN)OkB = (XOkB)V(NOkB), for every k = O,l,. . . . 

Consider now the special case when N](w) = 0, for 
every w E W, almost surely (a.s.), and X, Nz are a.s. non- 
interfering. By extending the discussion in [5] to the gray- 
scale case, we consider estimators X of X of the form 

li: = ‘Do(Y) = 1 [YOsB - YO(s + l)B] (6) 
sES+ 

and use as error criterion the (normalized) expected absolute 
difference metric 

D%.x = GlWl 1 E[ Ilk - Xllw I. 

The optimal estimator X of X is then obtained by determin- 
ing an index set S+ in (6) that results in minimum expected 
absolute difference. We now have the following proposition. 

Proposition 1 When Nr = 0, a.s., and X, Nz are a.s. 
non-interfering, the index set S+ = {s 2 0 I sx,(s) < 
sx(s)}, where SX(S) and SN~(S) are the open,ing/closing size 
densities of X and Nz, respectively, minimizes the expected 
absolute difference metric DR,~, g iven by (7), where X is 

given by (6). 

It is worthwhile noticing here that, if S+ = {so, so + 
l,...}, for some s D 2 0, then @o(Y) = YOs,B, whereas 
if S+ = (0, 1,. . . ,so - l}, for some so > 1, then *o(Y) 
= Y - YOs,B. Moreover, when G = 1 (i.e., in the bi- 
nary case) operator @o reduces to the fiber suggested in 

[5]. Proposition 1 requires only the assumption that. X, Nz 
are a.s. non-interfering (assuming also that NI = 0, as.), 
which is equivalent to assuming that the supports of X and 
Nz are a.s. disjoint and that 

(Xv N2)OkB = (XOkB) V (NaOkB), a.s., (8) 

for every k = O,l,.... This is in sharp contrast to the as- 
sumptions made in [5] which are quite rest.rictive and rather 
unrealistic. 

Assuming the supports of X and Nz to be as. disjoint 
is natural in certain applications. For example, consider 
the case when filtering is employed in order to remove clut- 
ter from image dam so as to rest.ore an object of interest 
X. In this case, clutter consists of all objects whose sup 
port is disjoint to that of X (assuming no occlusion) and 
can be modeled by means of a random field Nz such that 
supp(X) fl supp(N2) = 0, as. Condition (8) is a techni- 
cal condition, required by the proof of Proposition 1, that 
limits the potemial candidates for X and Nz in (4). The 
non-interfering assumption may therefore be viewed as a 
regularizing condition necessary to obtain a meaningful so- 
lution of the inverse (filtering) problem at hand. 

By duality (since X A NT = (X* V Nr)‘, in which case 
(X’ @B)* = X 8 B and (X*OB)* = XOB) and due to 
the particular form of (7), for which DA.,~. = Dk,,, we 
have t,he following proposit,ion. 

Proposition 2 When Nz = 0, a.s., and X*, Ni are a.s. 

non-interfering, then 

jc = (%(Y’)]’ = G(Y) 

= ‘,Z- IY.lslfi - Y.(ISI - 1m*, (9) 

minimizes the expected absolute difference metric D% x, 
given by (T), provided that S- = {s 5 -1 1 So*’ < 
sx (s)}, where sx (s) and sN; (s) are the opening f closzng 
size densities of X and N;, respectively. 

Notice that, if S- = {. . .“, -so - 2, -so - l}, for some 
so 2 0, then *o(Y) = YOs,B, whereas if S- = {-so? -so+ 
1 1 . . . 1 -11, for some so 2 1, then *e(Y) = (YOs,B-Y]‘. 

We may relax the non-interfering assumptions for X, 
Ns and X’, Nr ? and we may consider in (5) an operator \Ir 
= Qoqo. In this case, 9(Y) will be a suboptim,al, but nev- 
ertheless useful, solution t.o the image restoration problem 
under consideration. If we assume that X is a random field 
with size density sx(s), and if Nr, Nz are two realizations 
of a random field N with size density sN(s), then (recall (6) 

and (9)) 

li: = h(k) = ( c [ii.lslB - xqlsl - l)B])‘, (10) 
xES- 

ji: = *o(Y) = c [YOsB - YO(s + l)B]. (11) 
scs-+ 



Figure 3: Grayscale image restoration examples for a MRF and the Lenna image corrupted by min/max noise by means of 
a generalized alternating filter (GAF) and a generalized alternating sequential filter (GASF). 

Original Image Observed Data Restored Image 

GAFI 

Restored Image 
(GASF) 

In (10) and (ll), 

A% = {s 5 -1 1 SN*(S) < sX(s)} 

whereas 

= {s 5 -1 1 SN(ISI - 1) < U(S)}, (12) 

s+ = {s 2 0 1 SN(S) < SXr\N'(S)}. (13) 

Implementation of operator &Qo, by means of (lO)- 
(13), requires knowledge of the size densit.y S,V(S) of degra- 
dation N, for s 2 0, the size density sx(s) of image X, 
for s 5 -1, as well as the size density s.Y,,.v(s) of ran- 
dom field X A N’, for s 2 0. In the special csse when 
S+ = {so, so + 1,. . .} and S- = {. . . , -so - 2, -so - l}, 
for some so 2 1, %&lo(Y) = (YOs,B)Os,B and %@o is 
an alternating jilter (AF) of order so. We refer to operator 
QO@O as the generalized alternating filter (GAF) of order 
SO. 

Since alternating sequential filters (ASF) usually per- 
form better than AF’s (e.g., see [4]), we may modify the 
implementation of a.90 so it resembles an ASF. For k 2 1, 
let us define (see (6) and (9)) 

‘P:‘(Y) = YOkB + c [YOsB - YO(s + l)B], 
sES+,s<k-1 

(14) 

and 

i@‘(Y) = YOkB - c [YOlslB - YO(IsI - l)B], 
SES-. s>-k 

(15) 

where S- and S+ are given by (12) and (13), respectively. 
We may now consider an operator of the form !Vc”)@g”) . . . 

qjj)qjj)qp\Ir(l) o , where so 2 1 is the smallest. non-zero in- 
teger such that S+ > {so, so + 1,. . . } and S- > {. . . , -so - 
2, -so - 1). We refer to this operator as the generalized 
alternating sequenliul filter (GASF) of order so. It. is easy 
to see that, if S+ = {sorso + 1,. . . }, for some so 2 0, then 

@w(y) = 

1 

yaw for 1 5 k 5 so 

YOs,B, for k 2 s, + 1 ’ 

Similarly, if S- = {. . . , -so - 2, -so - l}, for some so 2 0, 
then 

\k(“)(y) = 
. 

1 

YokB~ for 1 5 k 5 so 

YOs,B, for k > so + 1 . 

Therefore, and in t,his case, QzO)@$O) . . . \k~‘~~)$~‘!l)\k~‘) 
is an ASF of order sO. 

We now demonstrate the use of GAF (i.e., of operator 

Q.90) and of GASF (i.e., of operator \k~s”)@~“) . . . @F’ 

@~)‘I!~‘)Q~l))I given by (lo)-(13) and (14), (15), respec- 
tively, for restoring images corrupted by min/max noise. 
In this case, we take Y = (X A NT) V Nz, where N1 and 
Nz have the same distribution as a random field N. The 
first row of Figure 3 depicts the result of image restora- 
tion of a random grayscale image X that was taken to be a 
256 x 256 pixel 16 graylevel MRF. The corrupting random 
field N was taken to be a Boolean model [2]. The size den- 
sities SX(S), for s 5 0, and sN(s), sx~N*(s), for s > O? of 
X, N, and X A N’, respectively, were estimated by means 
of the Monte Carlo estimator suggested in [S] (see Equa- 
tions (38) and (40)). The SQUARE structuring element 
has been employed. The second row of Figure 3 depicts a 
similar restoration example with X being a 256 x 256 pixel 
256 graylevel Lenna image. N was taken to be the same 
Boolean model <as before. The size density SX(S), s 2 0, 
was calculated by means of the empirical estimator sug- 
gested in [8] (see Equations (26) and (27)), whereas the size 
densities sN(s), SXA.V(S), s 2 0, were calculated by means 
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Figure 4: The SNR achieved by restoring X from Y by means of a generalized akernating filter (GAF), a generalized 
alternating sequential filter (GASF), an alternating filter (AF), an alternating sequential filter (ASF), and a 7 x 7 median 
filter for the hiRF and Lenn& imag& depicted in Figure 3.‘ 

of the Monte Carlo estimator suggested in [8] (see Equa- 
tions (38) and (40)). The SQUARE structuring element 
has been employed here as well. The signal-t-noise ratio 

SNR=$&, h ac ieved by restoring X from Y by means 

of a GAF, GASF, AF, ASF (the SQUARE structuring ele- 
ment was used in the implementation of both AF and ASF) 
and a 7 x 7 median filter (found to be optimal) is depicted 
in Figure 4. The GASF outperformed all other operators 
with GAF producing results very close to that of GASF. 
In the MRF case, the SNR of the observed data was 5.58 
(14.93 dB), whereas, application of GASF on Y resulted in 
a SNR of 12.60 (22.00 dB). In t.he case of the Lenna image, 
the SNR of the observed data was 6.60 (16.39 dB), whereas, 
the SNR of the restored data by means of GASF was 40.56 
(32.16 dB). On the other hand, application of GAF on Y 
resulted in a SNR of 11.86 (21.48 dB) for the MRF image 
and 31.66 (30.00 dB) for the Lenna image. 

In practice, either GAF or GASF should be preferred 
over AF or ASF (or even median filtering) since application 
of AF, ASF, or median filtering requires choosing the “op- 
timal size” of these operators which is not known a-priori. 
The GAF or GASF can be directly applied on data, as long 
as the associated size densities are known or have been es- 
timated. If the densities are not known a-priori, they can 
be estimated from training data or from a statistical model, 
by means of either the empirical estimators or the Monte 
Carlo estimators discussed in [8]. 

To conclude, we should point-out that, in the absence 
of any a-priori information? the problem of estimating the 
size densities, required for the implementation of the previ- 
ously suggested filters, from given data is analogous to the 
problem of calculating the signal and noise power spectra 
required for determining an “optimal” Wiener filter, when 
such filters are used for image restoration. Our problem 
here however is more complicated due to the non-linear 
form of the degradation equation (5) and is an exciting topic 
for further research. 

4. CONCLUSION 

We have applied previously proposed size density estima- 
tors to two traditional image processing and analysis prob- 
lems: texture classification and image restoration. In tex- 
ture classification, experiments have shown that our ap 
preach is highly accurate even when the underlying classes 

are close to each other. In image restoration, we have ex- 
tended the results of Haralick et. al. to the grayscale case 
and have generalized the well known notions of alternating 
and alternating sequential filters. The design of such filters 
requires knowledge of certain size densities which are esti- 
mated by means of empirical and Monte Carlo estimators. 
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