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ABSTRACT

Morphological size densities are frequently used as de-
scriptors of granularity or texture within an image. They
have been successfully applied in many image processing
and analysis tasks. It is extremely difficult however to an-
alytically calculate the size density. In a previous work, we
studied the problem of estimating the (discrete) morpholog-
ical size density of random images, by means of empirical as
well as Monte Carlo estimators. In this paper, we present
applications of size density estimators to the problems of
texture classification and morphological filtering. Experi-
mental results demonstrate that texture classification, by
means of morphological size densities, produces highly ac-
curate results, even when the texture classes are chosen to
be visually similar. For morphological filtering, we have ob-
tained, by means of morphological size densities, two useful
classes of filters, namely the class of generalized alternating
filters and the class of generalized alternating sequential fil-
ters, which generalize the well known alternating filters and
alternating sequential filters, respectively.

1. INTRODUCTION

The notion of morphological size density was first conceived
by Matheron [1]. Morphological size densities provide a
wealth of information about image structure and, as such,
they have been extensively used in a number of image pro-
cessing and analysis tasks, such as shape and texture anal-
ysis [2], multiscale shape representation [3], morphological
shape filtering [4,5], and the analysis, segmentation, and
classification of shape and texture [6]. Given a grayscale
random field X on Z2, of G gray levels, the function

ox(s) = = E(fl7s(X) = vo+1(X)llw), fors>0
GIW! | Elli101(X) — $1o1-1(X)llw], for s < —1(q)

where E[ | denotes expectation, |A| denotes the area (car-
dinality) of a set A, | X[lw = )} cw |X(w)| and W is a
data observation window, is known as the morphological
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size density of X (s in (1) is an integer). Mostly, we con-
sider either v,(X) = XOsB, ¢:(X) = X®sB, where © and
@ denote morphological erosion and dilation, respectively,
with B being a flat finite structuring element that contains
the origin, B = {—b | b€ B}, and sB = (s — 1)B® B, for
s> 1, or 75(X) = XOsB, ¢s(X) = X®sB, where O and
@ denote morphological opening and closing, respectively.

As noted by Matheron, it is extremely difficult to ana-
lytically calculate the size density of a given random field.
In order to effectively employ size densities in practice, it is
imperative to obtain reliable estimates of these quantities.
In a previous work [7], we studied the problem of estimating
the (discrete) morphological size density of random images,
by means of empirical as well as Monte Carlo estimators.
The superiority of the Monte Carlo estimation approach
was evident from theoretical analysis and experimental ob-
servations.

In this paper, we apply size density estimators to two
traditional image processing and analysis problems. Our
presentation is brief due to space constraints. For further
details however, the reader is referred to [8].

2. TEXTURE CLASSIFICATION

Texture classification is a key problem in image analysis.
The purpose of this section is to demonstrate the power of
morphological size densities, and the associated estimators,
for classifying random textures. We assume here that tex-
tures are to be classified into K different classes. We follow
a model-based approach, with each class k characterized
by means of a Markov random field (MRF) model Xj. The
class conditional probability density function is assumed
to be multivariate Gaussian with mean vector my and co-
variance matrix Ci, where my (i) = E[vk(z)] and Ci(4,5) =
E[ve (%) vk (j)], with

vi(3) = {lhso——i—H(xk) — Yso—i+2(Xk)|lw

1150 —i+11{Xk) = Dlso—itrj—1(Xi)llw
(2)

for1 <i< so+1and so+2 <7< 2(s,+1), respectively, and
some maximal size s, > 0. If the prior class probability is
uniform, the minimum error Bayes classifier is equivalent to
assigning a texture sample X with feature vector v, given by



(2) with X, being replaced by X, to the class of minimum

distance value

de(v) = (v —mg) C,.c_1 (v—

where ( )’ denotes vector transpose and det(A) is the deter-
minant of matrix A.

Implementation of the this approach requires a training
and a classification step. During training, a MRF model
is fit to class k and my, Cj are calculated for this model.
Model fit may be achieved by means of a MRF statisti-
cal inference technique, like Monte Carlo maximum like-
lihood [9], that determines the energy function Uk(X ) of
MRF X, from texture data representaiive of class k. Afier
Ukx(X) is determined, the Monte Carlo size density esti-
mators, discussed in [8], are employed in order to estimate
vector my. Matrix Ci is estimated by means of a Markov
chain Monte Carlo (MCMC) approach similar to the one
used for mg. The training step thus produces a collec-
tion {(mg,Ck),k = 1,2,..., K} of mean/covariance pairs
that characterize the K classes under consideration. Dur-
ing classification, the feature vector v is calculated from a
given image X, by means of the empirical estimators dis-

Lubbﬂu I.I]. lOJ, dIlu A lb (.ldbbll.lb'u to UC lIl lebb L ll (L[\V} ==
min {dx(v),k =1,2,..., K}, with di(v) given by (3).

The use of erosion/dilation and opening/closing size
densities as features for texture classification was tested in
two experiments Figure 1 depicts the results for grayscale
(for G = 15) texture classification. Four classes were as-
sumed with each class characterized by a 256 x 256 pixel

auto-binomial model with given parameters [8].

Classification Results
{ErosiorvDilation Sze Density)

Ciaet | Class 2 |.Clasa3 | Ciaesd

o
o
o
3

Figure 1: Opening/Closing and Erosion/Dilation size den-
sity based texture classification results in 100% classifica-
tion accuracy.
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algorithm, where the hlstogram of the initial image was
chosen to be uniform. The feature vector v was obtained
with s, = 9 and v, ¢ being either erosion/dilation or open-
ing/closing with respect to the RHOMBUS structuring el-
ement. A total of 4 X 19 images were employed (19 images
per class) for testing classification performance. 4 X 7 im-
ages were obtained from the training step (these images
were used in the MCMC estimation of mi and Cg, for
k = 1,2,3,4) with the other 4 x 12 images obtained by

means of MCMC independently of the training step. Clas-

sification based on the erosion /dﬂahnn and onening/closing

ification based o erosion /dilation and opening/closing
size densities were exceptlona,l producing no misclassifica-
tions; i.e., 100% accuracy.

The second experiment, depicted in Figure 2, was de-
signed to classify 4 x 19 grayscale images (with G = 15)
into four classes as well. In this case however, the classes
are characterized by very similar size densmes‘ Class 1 is
characterized by the same auto—binomial model as Class 4
in Figure 1. Classes 2, 3, and 4 are characterized by auto—
binomial models whose parameters are the ones of Class
1 divided by 2, 3, and 4, respectively. Notice the visual
similarity between the four realizations.
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fication resulted in 91% accuracy, whereas Opening
based classification resulted in 93% accuracy.
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curacy, whereas classification based on the opening/closing
size density produced 5 errors, resulting in 93% accuracy.
All errors occurred in classifying Class 2 textures as Class 1
(in the case of the erosion/dilation size density) or Class 1

texturas as Class 2 {in the case of the onenine/closinge size
textures as Liass £ (In 1ne €ase ol ine gpening/ciosing size

density).

Texture classification by means of size densities pro-
duces highly accurate results even in cases when textures
are visually indistinguishable. The training step is com-

nnf::hnna"v intensive due to the need of dnfnrmun1no’ the

proper MRF model for each class and the extensive MCMC
simulations required for obtaining estimates of (mg, Ck),
for k = 1,2,...,K. This step however needs to be done
once and off-line. The classification step is easy to imple-
ment, due to the relatively simple form of the feature vector
v. A cla531ﬁcat10n technique based on the erosion/dilation
size density should be considered first, since this technique
requires substantially less computations than a technique
based on opening/closing size densities and may provide
acceptable classification results in certain cases.

3. MORPHOLOGICAL FILTERING

In many image processing applications, image data Y are
corrupted by noise and clutter. It is therefore of great inter-
est to design an opcrator ¥ that, when applied on Y, opti-
mally removes noise and clutter. Solutions to this problem,
known as image restoration, have been recently obtained
by means of morphological filtering [4,5]. Image data Y are



considered to be realizations of a random field Y, given by
means of a degradation equation of the form

= (X ANj]) VN2, 4)

where A, V denote minimum and maximum, respectively,
X is a random field that models the image under considera-
tion, N1, N2 are two random fields that model degradation,
and N7 (w) = G— Ni(w), for every w in an observation win-
dow W. In particular, N1, N2 may model degradation due
to clutter, sensor noise, incomplete data collection, or oc-
clusion. This type of noise is frequently referred to as a
min/maz noise or “two—sided” noise. The problem of opti-
mal image restoration consists of designing a set operator
¥ such that

X = ¥(Y) = ¥((X AN}) VNy), (5)
is “optimally close” to X, in the sense of minimizing a dis-
tance metric Dy . It is this problem that we are consid-
ering in this section. Before we proceed however we need
the following definition (see also Property 4 in {4]).

Definition 1 Let X and N be two discrete-valued func-
tions, taking values in {0,1,...,G}, defined over a dis-
crete domain W. The support supp(X) of X is defined
as supp(X) = {w € W | X(w) # 0}. X and N are
said to be non—interfering, with respect to a structuring el-
ement B, if the supports of X and N are disjoint and
(XVN)OkB = (XOkB)V(NOEKB), for everyk =0,1,....

Consider now the special case when N;(w) = 0, for
every w € W, almost surely (a.s.), and X, N3 are a.s. non—
interfering. By extending the discussion in [5] to the gray-
scale case, we consider estimators X of X of the form

X=U(Y)= Y [YOsB-YO(s+1)B]  (6)

s€S,

and use as error criterion the (normalized) ezpected absolute
difference metric

l)XpX (valEH")( )(”W4 (7)

The optimal estimator X of X is then obtained by determin-
ing an index set S, in (6) that results in minimum expected
absolute difference. We now have the following proposition.

Proposition 1 When N; = 0, a.s., and X, N3 are a.s.
non—interfering, the indez set Sy = {s > 0 | sn,(s) <
sx(s)}, where sx(s) and sn,(s) are the opening/closing size
densities of X and N2, respectively, minimizes the erpected
absolute difference metric Dy x, given by (7), where X is
given by (6).

It is worthwhile noticing here that, if Sy = {s,, s, +
1,...}, for some s, > 0, then ¥o(Y) = YOs,B, whereas
if Sy = {0,1,...,5, — 1}, for some s, > 1, then Wo(Y)
=Y — YOs,B. Moreover, when G = 1 (i.e., in the bi-
nary case) operator ¥o reduces to the filter suggested in

[5]. Proposition 1 requires only the assumption that X, N
are a.s. non—interfering (assuming also that N; = 0, a.s.),
which is equivalent to assuming that the supports of X and
N2 are a.s. disjoint and that

(X VN2)OkB = (XOkB) v (N2OkB), as., (8)
for every k = 0,1,.... This is in sharp contrast to the as-
sumptions made in [5] which are quite restrictive and rather
unrealistic.

Assuming the supports of X and N3 to be a.s. disjoint
is natural in certain applications. For example, consider
the case when filtering is employed in order to remove clut-
ter from image data so as to restore an object of interest
X. In this case, clutter consists of all objects whose sup-
port is disjoint to that of X (assuming no occlusion) and
can be modeled by means of a random field N2 such that
supp(X) N supp(N2) = @, a.s. Condition (8) is a techni-
cal condition, required by the proof of Proposition 1, that
limits the potential candidates for X and N2 in (4). The
non—interfering assumption may therefore be viewed as a
regularizing condition necessary to obtain a meaningful so-
lution of the inverse (filtering) problem at hand.

By duality (since X A N7 = (X* V N1)*, in which case
(X*®B)*= X6 Band (X"OB)" = X@B8) and due to
the particular form of (7), for which Dy. x+ = Dy x, we
have the following proposition.

Proposition 2 When N2 = 0, a.s., and X*, N; are a.s.
non—interfering, then

= [W(Y")]" = Ta(Y)

= (D [Y®|s|3 - Y®(|s| - 1)B])", )

sES_

minimizes the ezpected absolute difference meiric Dy ,
given by (7), provided that S_ = {s < —1 | sy=(s) <
sx(s)}, where sx(s) and sn;(s) are the opemnq/closmg
size densities of X and Ni, respecfwely

Notice that, if S_ = {...,—s, — 2,—s, — 1}, for some
S0 > 0, then Ve (Y) = Y®5,B, whereas if S_ = {—s,, —so+
1,...,—1}, for some s, > 1, then Yo(Y) = [Y®@s,B - Y]".

We may relax the non-interfering assumptions for X,
N2 and X*, Ny, and we may consider in (5) an operator ¥
= WeUo. In this case, ¥(Y) will be a suboptimal, but nev-
ertheless useful, solution to the image restoration problem
under consideration. If we assume that X is a random field
with size density sx(s), and if N1, N; are two realizations
of a random field N with size density sy (s), then (recall (6)
and (9))

X=Te(X)= () [XO|s|B-X@(s| - B)", (10)

sES_

where

X=W(Y)= ) [YOsB—YO(s+1)B]. (11)

8ES,
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Figure 3: Grayscale image restoration examples for a MRF and the Lenna image corrupted by min/max noise by means of
a generalized alternating filter (GAF) and a generalized alternating sequential filter (GASF).

In (10) and (11),
S-={s<—1]sn+(s) < sx(s)}

={s<-1|sn(s|—1) < sx(s)}, (12)

whereas

St ={s 20| sn(s) < sxan=(s)}- (13)

Implementation of operator Ve %o, by means of (10)-
(13), requires knowledge of the size density s~ (s) of degra-
dation N, for s > 0, the size density sx(s) of image X,
for s < —1, as well as the size density sxa.n=(s) of ran-
dom field X A N*, for s > 0. In the special case when
St = {80,80+1,...} and S_ = {..., —so — 2, -5, — 1},
for some s, > 1, Yo Wo(Y) = (YOs5,B)®s,5 and Ve o is
an alternating filter (AF) of order s,. We refer to operator
Ve WUo as the generalized alternating filter (GAF) of order
So-

Since alternating sequential filters (ASF) usually per-
form better than AF’s (e.g., see [4]), we may modify the
implementation of We Uo so it resembles an ASF. For k > 1,
let us define (see (6) and (9))

¥ (Y)=YOkB + ) [YOsB-YO(s+1)B],
s€Sy,8<k~1 (14)

and

¥W(Y)=YOkB - [Y®|s|B-Y®(s| - 1)B],
s€S_,s>—k (15)

where S_ and S; are given by (12) and (13), respectively.
We may now consider an operator of the form W{**) @{*’ ...

\Il£2)\Ilc(,2)\Il.(1)\Ilél) , where s, > 1 is the smallest non—zero in-
teger such that S; D {so,80+1,...}and S_ D {...,—s,—
2,—s, — 1}. We refer to this operator as the generalized
alternating sequeniial filter (GASF) of order s,. It is easy
to see that, if Sy = {so,50 +1,...}, for some s, > 0, then

YOkKB, for1<k<s
vy = ’ e
o (Y) YOs,B, fork>s,+1

Similarly, if S— = {..., —s0 — 2, —8, — 1}, for some s, > 0,

then
Y®KB, fori<k<s
v{NY) = 2 =F =0
o (Y) Y@®s,B, fork>s,+1

Therefore, and in this case, \IJ£S°)\IJ<§S") e \Il.(2)\11é2)\11.(1)\11é1)
is an ASF of order s,.

We now demonstrate the use of GAF (i.e., of operator
Ve Uo) and of GASF (i.e., of operator SN ASLUN 1
Wé2)qI£1)Wél)), given by (10)—(13) and (14), (15), respec-
tively, for restoring images corrupted by min/max noise.
In this case, we take Y = (X A N}) V N3, where N; and
N3 have the same distribution as a random field N. The
first row of Figure 3 depicts the result of image restora-
tion of a random grayscale image X that was taken to be a
256 x 256 pixel 16 graylevel MRF. The corrupting random
field N was taken to be a Boolean model [2]. The size den-
sities sx(s), for s < 0, and sn(s), sxan~(s), for s > 0, of
X, N, and X A N*, respectively, were estimated by means
of the Monte Carlo estimator suggested in [8] (see Equa-
tions (38) and (40)). The SQUARE structuring element
has been employed. The second row of Figure 3 depicts a
similar restoration example with X being a 256 x 256 pixel
256 graylevel Lenna image. N was taken to be the same
Boolean model as before. The size density sx(s), s < 0,
was calculated by means of the empirical estimator sug-
gested in [8] (see Equations (26) and (27)), whereas the size
densities sn(s), sxan=(8), s > 0, were calculated by means
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filter for the MRF and Lenna images depicted in Figure 3.

of the Monte [
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onte Ca timator suggested in [8] (see Equa-
tions (38) and (4 ). The SQUARE structurmg element
has been employed here as well. The signal-to—noise ratio
SNR = rﬂ%, achieved by restoring X from Y by means

of a GAF, GASF, AF, ASF (the SQUARE structuring ele-
ment was used in the implementation of both AF and ASF)

and a 7 X 7 median filter (found to be optimal) is depicted
in F‘ururn 4. The GASFEF nnfnnrfnrmpd all other operators

with GAF producing results very close to that of GASF.
In the MRF case, the SNR of the observed data was 5.58
(14.93 dB), whereas, application of GASF on Y resulted in
a SNR of 12.60 (22.00 dB). In the case of the Lenna image,
the SNR of the observed data was 6.60 (1 6.39 dB\ whereas,
the SNR of the restored data by means of GASF was 40.56
(32.16 dB). On the other hand, application of GAF on Y
resulted in a SNR of 11.86 (21.48 dB) for the MRF image
and 31.66 (30.00 dB) for the Lenna image.

In practice, either GAF or GASF should be preferred
over AF or ASF (or even median filtering) since application
of AF, ASF, or median filtering requires choosing the “
timal size” of these operators which is not known a—priori.
The GAF or GASF can be directly applied on data, as long

as the associated size densities are known or have been es-

L€ asSSOClated sS1Ze QenNSities are Or n1a oeen €
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timated. If the densities are not known a-priori, they can
be estimated from training data or from a statistical model,
by means of either the empirical estimators or the Monte
Carlo estimators discussed in [8].

To conclude, we should noint—out that, i the absence

n
CCelilcude, € should pomti—out that, 1n ihe absenc

of any a—priori information, the problem of estimating the
size densities, required for the implementation of the previ-
ously suggested filters, from given data is analogous to the
problem of calculating the signal and noise power spectra

required for determining an “optimal” Wiener filter, when
g

such filters are used for image restoration. QOur problem
here however is more complicated due to the non-linear
form of the degradation equation (5) and is an exciting topic
for further research.

4. CONCLUSION

We have applied previously proposed size density estima-
tors to two traditional image processing and analysis prob-
lems: texture classification and image restoration. In tex-
ture classification, experiments have shown that our ap-
proach is highly accurate even when the underlying classes

alternating sequential filter (ASF), and a 7
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tended the results of Haralick et. al. to the grayscale casc
and have generalized the well known notions of alternating
and alternating sequential filters. The design of such filters
requires knowledge of certain size densities which are esti-
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