
AN EFFICIENT ALGORITHM FOR 3D BINARY MORPHOLOGICAL
TRANSFORMATIONS WITH 3D STRUCTURING ELEMENTS OF

ARBITRARY SIZE AND SHAPE

Nikos Nikopoulos and Ioannis Pitas

Department of Informatics, University of Thessaloniki
GR-54006 Thessaloniki, GREECE

Tel./Fax: +30-31-996304
e-mail: pitas@zeus.csd.auth.gr

ABSTRACT

This paper proposes a fast algorithm for implement-
ing the basic operation of Minkowski addition for the
special case of binary three-dimensional images, us-
ing three-dimensional structuring elements of arbitrary
size and shape. The application of the proposed algo-
rithm for all the other morphological transformations
is straightforward, as they can all be expressed in terms
of Minkowski addition. The efficiency of the algorithm
is analysed and some experimental results of its appli-
cation are presented. As shown, the efficiency of the
algorithm increases with the size of the structuring el-
ement.

1. INTRODUCTION

Over the last two decades, Mathematical Morphology
(MM) has proven itself as a powerful image processing
and analysis tool [1, 2]. A plethora of successful appli-
cations of MM in different fields have been presented
in the bibliography. A problem arised from the early
stages of MM was the high computational complexity
of the basic morphological transformations, that is di-
lation and erosion [1]. This problem has put a brake
in the application of MM in 3D image processing and
analysis, which is also very promising, although the
basic theory of MM is based on set theory and is not
restricted to two dimensions.

Many different techniques have been proposed for
implementing the basic morphological operations more
efficiently than by using their definition. Many of them
involve the use of parallel computers or specialized hard-
ware. Other techniques are strictly restricted to 2D im-
ages [4, 5]. Also, most techniques are applicable only
for structuring elements of specific shape or size, al-
though the use of structuring elements of arbitrary size
and shape can be very interesting in several applica-

tions [4]. For large structuring elements, decomposi-
tion in small structuring elements can be applied [3, 6],
which is generally computationally intensive. One of
the most interesting and efficient algorithms for the
fast calculation on conventional computers of the basic
morphological operations for 2D images is presented in
[4]. However, that algorithm cannot be extended di-
rectly in the case of 3D images due to the use of chain
coding.

The present paper proposes a fast algorithm for im-
plementing the basic operation of Minkowski addition
for the special case of binary 3D images (volumes),
using 3D structuring elements of arbitrary shape and
size. Basically, it introduces a suitable modification of
the approach [4] that enables the extension of its basic
idea in the 3D case. The use of this algorithm for all
other morphological operations is straightforward, as
they can all be expressed in terms of Minkowski addi-
tion. On conventional computers, this algorithm can
provide a substantial reduction of the execution time
in comparison to the corresponding time when the def-
inition is used, even to less than the one twentieth in
case of large structuring elements.

In the following, the theoretical background of the
proposed algorithm is first presented and then the algo-
rithm itself is described. Also, its computational com-
plexity is analysed and some experimental results of its
application are given.

2. THEORETICAL BACKGROUND

In this section, we shall give first some notations and
then we shall present a theorem on which the algorithm
is based.

In this paper, we are concerned about binary 3D
images. A digital binary 3D image I is a mapping
defined on a certain domain DI ⊂ Z

3 and taking its



values in {0; 1}:

I

{
DI → {0; 1}
p → I(p)

(1)

Z3 denotes the digital 3D space. The definition domain
DI of I is generally an orthogonal parallilepid. In the
framework of Mathematical Morphology, we are inter-
ested in the set of feature voxels (volume elements) of a
binary 3D image, i.e. the voxels with value 1 (1-voxels),
which is usually regarded as a point set in the case of
the set being transformed, or as a vector set in the case
of the structuring element [1] that is used for the mor-
phological transformation (a 3D structuring element B
can similarly be represented by a 3D binary image IB
defined in a domain DIB ⊂ Z

3).

Let B be a subset of Z3, considered as a vector
set. We denote B̌ the transposed set of B, that is its
symmetric set with respect to the origin O = (0, 0):

B̌ = {−b : b ∈ B} (2)

We denote Bx the translated of set B with respect to
the vector x ∈ Z3:

Bx = {b+ x : b ∈ B} (3)

We also denote BC the complement of set B:

BC = {b ∈ Z3 : b ∈/B} (4)

Let A and B be two subsets of Z3. TheirMinkowski
addition, denoted A⊕B, and their Minkowski subtrac-
tion, denoted A	B, are given by:

A⊕B = {x ∈ Z3 : ∃b ∈ B, x− b ∈ A} (5)

= {a+ b : a ∈ A, b ∈ B} (6)

A	B = {x ∈ Z3 : ∀b ∈ B, x− b ∈ A} (7)

= (AC ⊕B)C (8)

It is well known that all morphological transformations,
from the simplest (dilation, erosion, opening, closing)
to the more complex ones, are based on Minkowski ad-
dition and Minkowski subtraction [1]. Moreover, as de-
rived from (8), Minkowski subtraction can be reduced
to Minkowski addition. Therefore, in order to imple-
ment any morphological transformation, it suffices to
implement the Minkowski addition.

The algorithm presented in the next section is based
on the following easily proven theorem [4], which in-
troduces an alternative way for calculating Minkowski
addition:

THEOREM: Let X be a subset of Z3 and Surf(X) ⊆
X the set of all surface points of X. Also, let B ⊂ Z3 be
an arbitrary structuring element made of n connected
components B1, B2, . . . , Bn and for each i ∈ [1;n] let bi
be an arbitrary point included in Bi. Then, the follow-
ing relation holds:

X ⊕B =

 ⋃
i∈[1;n]

Xbi

 ∪ (Surf(X)⊕B) (9)

Assuming 26-connectivity in a 3× 3× 3 neighborhood,
the set Surf(X) practically includes all the voxels of
X that have at least one non-feature voxel (0-voxel) in
their 26-neighborhood.

3. ALGORITHM DESCRIPTION

In this section, we introduce an algorithm for calculat-
ing Minkowski addition of a 3D object X with a 3D
structuring element B, based on (9). We assume that
X is stored in a 3D image I defined in a domain DI
(3D array), B is stored in a 3D image IB defined in
a domain DIB and the output X ⊕ B is written in a
3D image I ′ defined in a domain DI′ (with sufficient
dimensions).

The algorithm includes three steps: surface track-
ing and encoding, structuring element encoding, and
output calculation. Each step is described in detail be-
low.

3.1. Surface tracking and encoding

This step aims at finding the set Surf(X), that is the
set of surface voxels of X , and coding it in a way suit-
able for the output calculation step. The proposed ob-
ject surface coding is a novel one, specialized for this
algorithm. The object surface is represented by voxel
lists. We assume that Surf(X) consists of n(X) dif-
ferent connected surfaces S1, . . . , Sn(X). The number
of connected surfaces can be equal or greater than the
number of connected components of X , depending on
whether there are connected components with inter-
nal “holes” or not. Each Si is coded as a list of NSi
structures, where NSi is the number of voxels of Si.
Each structure contains the position of the correspond-
ing voxel pSi,j, j ∈ [1;NSi] of Si and an array of links
dl(pSi,j) ∈ [1; 26], l ∈ [1; l(pSi,j)] to other voxels of
Si in its 26-neighborhood. A link is in fact the direc-
tion d ∈ [1; 26] of movement from the current voxel to
the voxel being linked. These links are a key point in
achieving the efficiency of the algorithm. The following
rules are employed:



• The first voxel pSi,1 of each Si is not linked from
another voxel.

• Each of the other voxels pSi,j , j ∈ [2;NSi] is
linked from only one other voxel of Si.

• Each voxel can have links to more than one other
voxels, or to none.

Surface tracking and encoding is achieved efficiently
in one scanning of DI , by using a “burning” procedure
and by utilizing proper labelling of 1-voxels to avoid
repetitions in value checking. During the global scan-
ning, if a 1-voxel is reached, then, if it is an internal
voxel it is labelled with a value 3, whereas, if it is a
surface voxel it is considered as the first voxel of a
connected surface, which is subsequenly tracked in a
burn-like manner: The first voxel is labelled with a
value 2 and is put in a FIFO stack. For each voxel ex-
tracted from the stack, we examine the voxels in its 26-
neighborhood; we put links to the surface voxels that
have not already been linked, we label them with a
value 2 and we put them on the stack, whereas the
internal voxels are labelled with a value 3. When the
stack is empty, all the voxels of the current connected
surface have been tracked and coded and the global
scanning is continued from the first voxel, so that all
other connected surfaces are tracked and coded in the
same way.
At the end of this step, one optional further simple

scanning of DI may be necessary in case the input 3D
image I should be left unchanged. That is, all 1-voxels,
which have been labelled during the first scanning, are
restored to value 1.

3.2. Structuring element encoding

In order to achieve efficient output calculation, an ap-
propriate encoding of the structuring element B is also
required. As it will be seen in the third step, it is
important to find and keep the sets Surfd(B), of the
surface voxels of B in each direction d ∈ [1; 26], given
by:

Surfd(B) = {p ∈ B : p+ ~ud ∈/B} (10)

where ~ud is the vector from a voxel to the voxel in its
26-neighborhood in direction d. The encoding includes
the following elements:

• n(B): the number of connected components of
B.

• s(B): the size of B, i.e. the number of 1-voxels of
B.

• {sd(B)}d∈[1;26]: the sizes of the sets Surfd(B).

• A(B): an array of size s(B) of all voxels (vectors)
of B.

• {Ad(B)}d∈[1;26]: arrays of respective size sd(B)
of the voxels (vectors) of the sets Surfd(B).

• flagB: a variable whose value is 0 if B does not
contain its center, or, otherwise, the label (i.e.
the number) of the connected component of B
holding the center.

• {pi(B)}i∈[1;n(B)]: array of size n(B) of arbitrary
voxels (vectors), such that pi(B) ∈ Bi, ∀i ∈
[1;n(B)], where Bi is the respective connected
component of B.

The encoding of the structuring element is achieved
with a similar procedure as that of tracking and en-
coding the set Surf(X). The difference is that we do
not discriminate between surface and internal voxels
and that, instead of forming the encoding of Surf(X),
we put each 1-voxel encountered in array A(B) and, if
needed, in one of the arrays Ad(B), d ∈ [1; 26]. Also,
we easily update the other elements of the encoding
during the scanning.

3.3. Output calculation

Output calculation, in fact, implements (9). We as-
sume that DI′ is initialized with zero values. Thus, we
need only to set the 1-voxels of DI′ .
First, we form the set

⋃
i∈[1;n(B)]Xpi(B) by assign-

ing the value 1 to the voxels of DI′ belonging to the
set
⋃
p∈X

⋃
i∈[1;n(B)](p + pi(B)) Next, we form the set

Surf(X) ⊕ B by propagating B along the voxels of
Surf(X), which, as it is easily proven, is equivalent
to assigning the value 1 to the voxels of DI′ belonging
to the set

⋃
i∈[1;n(X)][

⋃
p∈A(B)(pSi,1 + p) +

⋃
j∈[1;NSi ]⋃

l∈[1;l(pSi,j)]

⋃
p∈Adl(pSi,j)

(B)](pSi,j +~udl(pSi,j)+ p)]. As

it is obvious from the last expression, we make use of
the fact that when propagating B from a surface voxel
to another surface voxel in its neighborhood, we need
only to add the voxels of the set Surfd(B), where d
is the direction (the link) from the first voxel to the
second. This leads to the extremely fast calculation
of Surf(X) ⊕ B. Considering also the fact that only
the set Surf(X) is used, instead of the entire X , we
can have an idea of the efficiency of the presented al-
gorithm.

4. ALGORITHM ANALYSIS

The efficiency of the above algorithm is the result of
processing as few voxels as possible during each step
of the algorithm, especially in the output calculation



step as explained above. Although the step of surface
tracking and encoding and the step of structuring el-
ement encoding (in case of structuring elements with
large size) can require a significant percentage of the
overall operations, the output calculation step is very
efficiently performed, in comparison to the number of
operations needed when implementing the Minkowski
addition by using its definition. The same stands for
the case when we use the above mentioned algorithm
for implementing the dilation or erosion. Also, since
the time needed for the surface tracking and encoding
step for a specific 3D image is constant, it is expected
that the overall time of all three steps becomes com-
paratively much smaller as the size of the structuring
element increases.
In the following, the computational complexity is

measured with the number of accesses to a voxel of a
3D image, either for examining its value, or for assign-
ing a new value (basic operations). From the above
description, we can easily show that an upper bound
for the number of basic operations NBO performed by
the algorithm is (not including the steps of restoring
the labelled 3D images to their initial values):

NBO = NI + (27 + n(B))×N1I
+(26 + s′(B)) ×NS +NIB

+(27 + n(X))× s(B)− n(X)× s′(B) (11)

whereNI is the number of voxels of I, N
1
I is the number

of 1-voxels of I, NS =
∑n(X)
i=1 NSi is the number of

voxels of Surf(X), NIB is the number of voxels of IB,
and s′(B) = maxi∈[1;26] si(B).
The number of basic operations N ′BO performed by

a trivial implementation of Minkowski addition using
its definition (6) is:

N ′BO = NI + (NIB + s(B))×N
1
I (12)

since we need to perform an entire scanning of I and,
for every 1-voxel of I, to scan IB and assign 1 at the
appropriate voxel of the output I ′ for each 1-voxel of
IB . Usually, in (11) and (12) the terms related with
N1I are the most significant. For structuring elements
larger than 5×5×5, it is 27+n(B)� NIB+s(B), which
explains the efficiency of the presented algorithm.
In Fig. 1, we give some experimental results of the

application of the presented algorithm in the calcula-
tion of the dilation of a test binary 3D image with struc-
turing elements of different size. We compare the exe-
cution time of the proposed algorithm and of that using
the definition of Minkowski addition (6). The data of
Fig. 1 are also illustrated in Fig. 2. As derived from the
experimental results, for a small structuring element of
size 3 × 3 × 3 the overall execution time is compara-
ble for the two cases. The efficiency of the algorithm

SE size t1 t′1 t2

3× 3× 3 2.83s 0.23s 2.13s
5× 5× 5 3.05s 0.44s 7.71s
7× 7× 7 3.46s 0.86s 20.03s
9× 9× 9 4.13s 1.52s 41.83s
11× 11× 11 5.12s 2.74s 76.20s
13× 13× 13 6.42s 4.05s 127.44s
15× 15× 15 8.17s 5.84s 195.36s
17× 17× 17 11.22s 8.44s 291.92s

(a)

SE size t1
t2
· 100% t′1

t2
· 100%

3× 3× 3 132.86% 10.80%
5× 5× 5 39.56% 5.70%
7× 7× 7 17.27% 4.30%
9× 9× 9 9.87% 3.63%
11× 11× 11 6.72% 3.60%
13× 13× 13 5.04% 3.18%
15× 15× 15 4.18% 2.99%
17× 17× 17 3.84% 2.89%

(b)

Figure 1: (a) Execution times of the dilation of a
128×128×128 binary 3D image with cubic structuring
elements (SE) of different size. t1: execution time using
the presented algorithm. t′1: part of t1 corresponding
to the output calculation step only. t2: execution time
using the definition of Minkowski addition. (on a Sil-
icon Graphics Indy MIPS R4400 200MHz workstation
running IRIX 5.3), (b) Comparison between the above
execution times.

is obvious for structuring elements of size 5 × 5 × 5
or larger. Undoubtedly, the larger the structuring ele-
ment, the greater the gain if the present algorithm is
used. Considering only the execution time of the out-
put calculation step, this is much smaller than that of
the case when the definition is used, even for a small
structuring element of size 3× 3× 3. This fact reveals
also the gain of using the proposed algorithm in an
application where e.g. a 3D image needs to be dilated
successively by different small structuring elements; in
such an application, the surface tracking and encoding
step, whose execution time dominates over that of the
output calculation step for small structuring elements,
needs to be performed only once in the beginning.



0

50

100

150

200

250

300

3x3x3 5x5x5 7x7x7 9x9x9 11x11x11 13x13x13 15x15x15 17x17x17

E
xe

cu
tio

n 
tim

e 
(s

ec
)

Size of SE

t1
t1’
t2

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3x3x3 5x5x5 7x7x7 9x9x9 11x11x11 13x13x13 15x15x15 17x17x17
Size of SE

t1/t2
t1’/t2

(b)

Figure 2: (a) Diagram illustrating the values of Fig. 1a.
(b) Diagram illustrating the values of Fig. 1b.

5. CONCLUSION

In this paper, we presented a very efficient algorithm
for the implementation of Minkowski addition for the
special case of 3D sets represented by binary 3D im-
ages, using 3D structuring elements. It can easily be
modified for the implementation of all the other mor-
phological transformations. The algorithm does not
pose any restrictions on the shape or the size of the
structuring elements. The efficiency of the algorithm
was analysed and some results of its application were
presented. As it was made obvious, the efficiency of
the algorithm is significant for 3D structuring elements
larger than 5× 5× 5.

6. REFERENCES

[1] J. Serra, Image Analysis and Mathematical Mor-
phology, Academic Press, London, 1982.

[2] J. Serra, ed., Image Analysis and Mathematical
Morphology, Part II: Theoretical Advances, Aca-
demic Press, London, 1988.

[3] I. Pitas, A.N. Venetsanopoulos, Nonlinear Digital
Filters: Principles and Applications, Kluwer Aca-
demic Publishers, 1990.

[4] L. Vincent, “Morphological transformations of bi-
nary images with arbitrary structuring elements”,
Image Procesing, vol. 22, no. 1, pp. 3–23, January
1991.

[5] L.J. Piper and J.-Y. Tang, “Erosion and dilation
of binary images by arbitrary structuring elements
using interval coding”, Pattern Recognition Letters,
pp. 201–209, April 1989.

[6] H. Park, R.T. Chin, “Decomposition of Arbitrar-
ily Shaped Morphological Structuring Elements”,
IEEE Trans. Pattern Anal. Machine Intell., vol. 17,
no. 1, pp. 2–15, January 1995.


