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ABSTRACT 
This paper investigates performance limitations in 
subband acoustic echo controllers due to modelling 
errors. It is shown that the subband model of a system is 
exact only when the number of taps in each subband 
filter is infinite. When the number of taps used is finite, it 
is shown that the system modelling error represents an 
upper bound on performance. 

1. INTRODUCTION 
In this paper the analysis given by Gilloire and Vetterli 
[ 11 is extended for the special case in which the model 
matrix is made to be diagonal, as shown in Fig. 1. The 
subband filters are derived from the solution to the 
Wiener-Hopf equations in each subband for the case of 
stationary unit variance white noise input. This 
derivation yields analytic expressions for the modelling 
error. Subsequently, a direct relationship is derived 
between the coefficients of the optimal subband filters of 
a given order and the equivalent full-band system. From 
this, it is shown that general full-band systems can only 
be modelled by a subband FIR system using filters of 
infinite order in each band. 

Simulation results are given which show the effect of the 
modelling error when the system is a unit delay and when 
the system is that of a typical handsfree telephone. 

2. SUBBAND MODELLING 
The formulation of Gilloire and Vetterli is adopted from 
[l] where it is shown that, for a two subband system, the 
general form of the subband filters in a structure similar 
to that shown in Fig. 1 is the model matrix 

C,(z) = 
co.0 (z) co., (z) 
C,,,,(z) 1 C,,,(z) ’ 

(1) 

Using (1) and defining H(z) = 
[ 

4 (4 4, C-z) 

H,(z) 1 ff,(-z) ’ 

Stz)=[‘t) ,“,,] and K(z)=[:(~,]. then 

C,(z) is derived in [I], so as to give zero subband 

error signals, from the solution of 

C,(z* W(z) = H(z)S(z) . (2) 

In fact, the system shown in Fig. 1 is a special case of 

great practical interest in which the model matrix C,(z) 
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is diagonal such that Ctx,(z) = C,,(z), C,,(z) = C,(z) , 

co, (z> = C,,,(z) = 0 . 

Choosing 

H,,(z) = H(z) and H,(z) = H(-z) (3) 

it is shown [I] that either of the following conditions 
must be true in order for the solution of (2) to yield a 
zero error using a diagonal model matrix: 

H,,(z)H,(t) = 0 or S(z)-S(-z)=O. (4) 

We define a signal i(n) which is the component of 

e(n) due only to x(n) when S(z) = 0. Using the 

conditions of (3) to obtain alias cancellation, the z- 

transform of i(n) can be written 

i(z) = -#[X(z)(H2(z)C;,(z2)- l-i?-z)qz*))+ 

xc-z)(H(zW(-z&(z2) - H(zw(-z)qz2))] (5) 

for which terms in X(-z) vanish if at least one of the 

following conditions is true: 

H(z)H(-z) = 0 (6) 

c,,(z*)-c,(z*)=0, (7) 

otherwise, aliasing occurs. From (4), (5), (6) and (7), the 
problems of subband adaptive filtering can be 
summarized: 

a) Aliasing will be generated unless ideal filter banks 
are used, or the unknown system S(z) is even, or the 

subband adaptive filters are identical in each band. 

b) The accuracy of subband modelling is limited 

because the subband filtering is a function of z* 
whereas the unknown system S is a function of z. 
Hence, for a general S(z) which cannot be assumed 

even, S(z) can only be approximated by the subband 

adaptive filters. This approximation error is present 
even if no aliasing is generated. 

3. DERIVATION OF THE SUBBAND 
FILTERS 

3.1 Expressions in z for the optimal suhhand filters. 

If we consider the case when C,(z) is forced to be 

diagonal as shown in Fig. 1 the adaptive filtering can 

then be expressed in terms of a search for C,,(z) and 

C,(z) which, in the limit, satisfy Y”(z) - $(z) = 0 and 
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Y,(z) - Y,(z) = 0 respectively over the band of 

frequencies from -n to n . The resulting expressions 

are 

t 

H”(zy2)s(zy2)x(zy2>+ 

C,,(z) = 
H,,(-z”2)S(-Z”2)X(-Z”2) I 

H,,(z”2)X(Zy2)+H~~(-Z”2)X(-zy2) 

. (8) 

t 

H,(z”2>s(z”2)X(Zy2)+ 

C,(z) = 
H,(-z~2)S(-Zy2)X(-Zy2) I 

H,(z”2)X(Z~2)+H,(-z”2)X(-Zy2) 

These can be simplified when X(z) = X(-z) and 

H,(z), H,(z) are ideal lowpass and highpass filters 

respectively, then 

C,,(z) = S(z”*) and C,(z) = S(-zy2). (9) 

3.2 Derivation of optimal subband filters from 
solutions to the Wiener-Hopf equations. 

For the structure shown in Fig. 1, the subband filters, 

C,,(z) and C, (z) , which optimally model the system 

S(z) are now derived from solutions to the Wiener-Hopf 

equations. The analysis filters H,,(z) and H,(z) are 

chosen to be perfect linear-phase half-band lowpass and 
highpass filters respectively so that no aliasing is 
generated by decimation by 2, i.e. 

h,, (n) = ): sinc( nn/2), 

h, (n) = (-‘)“A sinc(nlr/2), (10) 

n=-, . . . , m. 

The signals x;(n) and y<)(n) in Fig. 1 are given by 

xi(n) = ): xsinc(k?r/2)x(2n- k) 
t=- 

. (11) 

y,)(n) = j$ 5 sinc(k x/2)d(2n- k) 
t=- 

When x(n) is unit variance white noise, the 

autocorrelation function r,(m) of the signal xi(n) can 

be found by writing 

r, (m) = E[xA (n)xb (n + m)] 

= E 
[t 

x tsinc(kn/2)x(2n-k) 
1 

x 
t=- 

Xlzsinc(lrr/2)x(2(n+m)-I) 
(12) 

0 form*0 

= ): form= 0 

and therefore the autocorrelation matrix R = x I . 

The crosscorrelation of xi(n) and y,,(n) is given by 

Ai) = &Xn-ib@)], 

(13) 

1 &nc((q - %)@)s, . 
p =X tsinc(qz/2)s, 

q=o 

gsinc((q - i,, )IF/2)sq 

where the subband filter C,,(z) has coefficients over the 

range I,, to I, with I,, allowed to be negative. The 

system S(z) has impulse response s = [sO,s, ,-.. ,sy ] 

The solution of the Wiener-Hopf equation c,, = R-‘p 

yields the subband filter which minimises the mean 
square output error for a given system S(z) and a given 

range of the filter indices I,, and lM as 

c,,, = tsinc((q-2i)d2)rq, I,, I i I I, (14) 
q=ll 

and similarly 

cli = t(-I)‘sinc((q-2i)lr/2)s, , I, li I I,. (15) 
q=o 

3.3 Modelling Error. 

We now consider the minimisation of the tap norm by 
writing 

t=i,+i,. (16) 

L, is the equivalent full-band filter corresponding to the 

path through an ideal analysis filter, decimator, arbitrary 
lower subband filter, interpolator and ideal synthesis 

filter. iZ, is the equivalent full-band filter corresponding 

to the path through an ideal analysis filter, decimator, 
arbitrary upper subband filter, interpolator and ideal 

synthesis filter. The coefficients of i,, and e, can be 

written as 
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and 

it,,- = X 2c,,sinc((j - 2i)X/2) (17) 
ido 

cIlj =Xi$0c,i(-l)‘sinc((j-2i)Ir/2) (18) 

The resulting full-rate impulse response has coefficients 

tj =X~(~,,~+(-l)‘c,~~inc((j-2i)lr/2). (19) 
;=I” 

The squared tap norm can be written 

lls-i/l’ = 2 (Sj -zj)2 =tsj* -25Sj;j + t tj* 
j=- j=ll j=O j=- 

P ‘I (qti +(-l)‘c,,)x 

=$‘j* -g’ji$ sinc((jw2j)r//2) 
l 1 

.cm 

To find the minimum squared tap norm, partial 
derivatives of (20) with respect to each filter coefficient 
can be taken and set to zero. This leads precisely to 
equations (14) and (15), which were derived by 
minimising the output error. 

It is now possible to write an expression for the 
equivalent full-band filter which corresponds to subband 
filtering using optimal subband filters of a given length 
by substituting (14) and ( 15) into (19) giving 

tj =~$.~~q{l+(-l)q+‘}sinc((q-2i)?r/2)sinc((j-2i)?l/2). 
i=lgq=ll 

(21) 

When j is even and q is odd (1+(-l)“‘)} equals zero. 

When j and q are even and I,, I 0 and I, 2 Q/2, 

2j 
j even 

=X$.yq{l+(-l)*)sinc((q- j)n/2)=sj. (22) 

When j is odd and q is even the terms within the braces 
of (22) sum to zero. When j and q are odd, 

We now determine the limits of i for which tj = sj , j 

odd. This can be found by using 

C sinc( ((7 - 2i) Ir/2)sinc( (j - 2i) x/2) 
i=- 
q cdd 
j odd (24) 

= iginc((q-i)X/2)sinc((j-i)R/2)-(l)2 = 1 

since q-j is always even when both q and j are odd, 

and since 

~sinc((q-i)n/2)sinc((j-i)~/2) = 
i=- 

izi. (23 

Hence the range of coefficient indices in the subband 

filters I, =e, I, =+m, I,, lil I, yields ii =sj, 

j odd. 

This analysis shows that the optimal subband system with 

at least Q/2 taps in each of two subbands will model 

perfectly the even taps of S(z) , such that 

tj = X(c,,; +cli) = sj forj = 2i, 0 I i I Q/2. (26) 

It also shows that the optimal subband system can model 
the odd taps of S(z) perfectly if an infinite number of 

taps is used in each of the two subbands, from equations 
(19) and (23), such that 

c^. :.odd =X g(coi -~,~).sinc((j-2i)x/2)=s~. (27) 
ice 

4. SIMULATIONS AND RESULTS 

The aim of the first experiment is to investigate the two 
sources of errors in subband system identification, 
namely, aliasing error due to non-ideal filter banks and 
modelling error as highlighted in this paper. The 

unknown system S(z) = z-’ . 

In this experiment, the filter banks use the designs of 
Johnston [2] for 16-tap, 32-tap and 64-tap filters, and 
further designs based on the same criteria for 128-tap and 
256-tap filters. Within each subband, optimal subband 
filters given by (16) and (17) are applied. The number of 
taps in the subband filters is varied using 

I,, = -[1,2,4,8,16,32,64,128,256,512] and I,W =-I,, - 1. 

For each filter bank order and for each subband filter 
order, the signal e(n) in Fig. 1 is used to compute the 

mean square error normalised to the desired response 

d(n) and averaged across five trials using Gaussian 

distributed white noise input signals. These results are 
plotted in Fig. 2 which also shows the theoretical 

modelling error, IIs - Cji’ /~~s~~’ , for ideal filter banks. 

The key features of Fig. 2 are as follows. 

(a) The accuracy of a subband model of S(z) = z-’ is 

generally very poor even for subband tilters of up to 
1024 taps in each subband. 

(b) The theoretic result shows an upper bound on the 
accuracy of the subband model which increases with the 
number of taps in each subband. 

The second experiment used USASI noise as the input 
signal and the system response was the measured 2048- 
tap response of a handsfree telephone. The analysis and 
synthesis filters were the all-pass polyphase filters 
described in [3]. The two band system was run with 
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I,, = -[0,2,4,8,16,32,64,128] andI, = 1023, for 32000 

samples of the input signals with an exact initialization 
FTF-GMC algorithm [4] used in each of the subbands. 
Fig. 3 shows the theoretical modelling error and the final 
normalised mse as a function of subband length. The 
theoretical modelling error reduces from -17dB to -29dB 
with increasing subband filter length. When there is no 
output measurement noise the normalised mse reduces 
from -42dB to -44dB. When SNR is 40dB the 
normalised mse reduces from -37.8dB to -38.5dB. When 
the input signal is correlated minimising the output error 
does not minimise the modelling error; the difference 
between the theoretical modelling error and the measured 
normalised output error indicates that the adaptive 
subband system has been able to obtain good output 
error reduction even when the modeling error is large 

When a system is undermodelled (as is the case when 
subband filters are used) the system which minimises the 
output error for one correlated signal will not necessarily 
minimise the output error for another correlated signal. 
The improvement in the theoretical modelling error as 
the subband filter length is increased indicates that this is 
beneficial to ensure that low output error is obtained for 
non-stationary signals such as speech. 

5. CONCLUSIONS 

The observation that full-band adaptive systems, as used 
in system identification or acoustic echo control, can 
obtain significantly smaller final misadjustment than 
subband systems with the same number of adaptive 
parameters motivated this study of modelling errors in 
subband adaptive filters. An explanation has been 
presented for the difference in final misadjustment which 
suggests that the modelling capability of subband 
systems is limited not only by aliasing errors due to non- 
ideal filter banks but also by the intrinsic properties of 
the subband structure. 
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1 

Fig. 2. Normalised mean square error as a function of 
subband filter length for filter bank lengths of 16,32, 
64, 128 and 256, and the theoretical modelling error 

for S(z) = z-’ . 

Fig. 3. Normalised mean square output error when 
SNR is 40dB and when there is no measurement 
noise, and the theoretical modelling error as a 
function of subband filter length for the system of 
length 2048. 
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